通过手电筒照射超快、可扩展地制造用于稳定锂金属阳极的 Cu-CuxO 纳米结构

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-09-12 DOI:10.1021/acsanm.4c0108910.1021/acsanm.4c01089
Gwanho Kim, Jae Young Seok, Yeon Uk Kim, Sin Kwon, Hyuntae Kim, Yu Mi Woo, Wooseok Yang, Jung Hwan Park*, Cheolmin Park* and Kyoohee Woo*, 
{"title":"通过手电筒照射超快、可扩展地制造用于稳定锂金属阳极的 Cu-CuxO 纳米结构","authors":"Gwanho Kim,&nbsp;Jae Young Seok,&nbsp;Yeon Uk Kim,&nbsp;Sin Kwon,&nbsp;Hyuntae Kim,&nbsp;Yu Mi Woo,&nbsp;Wooseok Yang,&nbsp;Jung Hwan Park*,&nbsp;Cheolmin Park* and Kyoohee Woo*,&nbsp;","doi":"10.1021/acsanm.4c0108910.1021/acsanm.4c01089","DOIUrl":null,"url":null,"abstract":"<p >Three-dimensional porous nanoarchitectures on current collectors are effective for stabilizing Li metal anodes. However, developing these nanostructures in a simple and cost-effective manner is challenging. To address this, we propose a flashlight-based ultrafast and scalable method for manipulating nanoarchitectures on Cu foil. Cu(OH)<sub>2</sub> nanorods directly grown on Cu foil that are exposed to a flashlight can be photothermally activated to undergo ultrafast phase conversion to a mixed phase of Cu and Cu<sub><i>x</i></sub>O while minimizing their structural collapse. The transformed hybrid nanorods have a sufficient pore volume, a large lithiophilic surface, and efficient electrical conduction to stabilize the lithium anode, thereby improving the long-term cycling stability and rate performance of the Li metal battery. Notably, capacity retention is observed to be ∼96% after 200 cycles at 0.5 C and ∼70% of its maximum capacity under a high-rate condition (5 C). Our simple approach enables ultrafast, large-area fabrication of nanoarchitectures that can stabilize the Li metal anode. We believe that further development in conjunction with a roll-to-roll process will accelerate the commercialization of Li metal batteries.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast and Scalable Fabrication of Cu–CuxO Nanostructures for Stabilizing Lithium Metal Anodes via Flashlight Irradiation\",\"authors\":\"Gwanho Kim,&nbsp;Jae Young Seok,&nbsp;Yeon Uk Kim,&nbsp;Sin Kwon,&nbsp;Hyuntae Kim,&nbsp;Yu Mi Woo,&nbsp;Wooseok Yang,&nbsp;Jung Hwan Park*,&nbsp;Cheolmin Park* and Kyoohee Woo*,&nbsp;\",\"doi\":\"10.1021/acsanm.4c0108910.1021/acsanm.4c01089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Three-dimensional porous nanoarchitectures on current collectors are effective for stabilizing Li metal anodes. However, developing these nanostructures in a simple and cost-effective manner is challenging. To address this, we propose a flashlight-based ultrafast and scalable method for manipulating nanoarchitectures on Cu foil. Cu(OH)<sub>2</sub> nanorods directly grown on Cu foil that are exposed to a flashlight can be photothermally activated to undergo ultrafast phase conversion to a mixed phase of Cu and Cu<sub><i>x</i></sub>O while minimizing their structural collapse. The transformed hybrid nanorods have a sufficient pore volume, a large lithiophilic surface, and efficient electrical conduction to stabilize the lithium anode, thereby improving the long-term cycling stability and rate performance of the Li metal battery. Notably, capacity retention is observed to be ∼96% after 200 cycles at 0.5 C and ∼70% of its maximum capacity under a high-rate condition (5 C). Our simple approach enables ultrafast, large-area fabrication of nanoarchitectures that can stabilize the Li metal anode. We believe that further development in conjunction with a roll-to-roll process will accelerate the commercialization of Li metal batteries.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c01089\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c01089","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电流收集器上的三维多孔纳米结构可有效稳定锂金属阳极。然而,以简单、经济高效的方式开发这些纳米结构具有挑战性。为了解决这个问题,我们提出了一种基于手电筒的超快、可扩展的方法来操纵铜箔上的纳米结构。直接生长在铜箔上的 Cu(OH)2 纳米棒在手电筒的照射下可被光热激活,进行超快的相转化,变成 Cu 和 CuxO 的混合相,同时最大限度地减少其结构塌陷。转化后的混合纳米棒具有足够的孔隙率、较大的亲锂表面和高效的导电性,可稳定锂负极,从而提高锂金属电池的长期循环稳定性和速率性能。值得注意的是,在 0.5 摄氏度条件下循环 200 次后,容量保持率为 96%;在高倍率条件下(5 摄氏度),容量保持率为最大容量的 70%。我们的简单方法能够超快、大面积地制造出能够稳定锂金属阳极的纳米结构。我们相信,结合卷对卷工艺的进一步开发将加速锂金属电池的商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrafast and Scalable Fabrication of Cu–CuxO Nanostructures for Stabilizing Lithium Metal Anodes via Flashlight Irradiation

Three-dimensional porous nanoarchitectures on current collectors are effective for stabilizing Li metal anodes. However, developing these nanostructures in a simple and cost-effective manner is challenging. To address this, we propose a flashlight-based ultrafast and scalable method for manipulating nanoarchitectures on Cu foil. Cu(OH)2 nanorods directly grown on Cu foil that are exposed to a flashlight can be photothermally activated to undergo ultrafast phase conversion to a mixed phase of Cu and CuxO while minimizing their structural collapse. The transformed hybrid nanorods have a sufficient pore volume, a large lithiophilic surface, and efficient electrical conduction to stabilize the lithium anode, thereby improving the long-term cycling stability and rate performance of the Li metal battery. Notably, capacity retention is observed to be ∼96% after 200 cycles at 0.5 C and ∼70% of its maximum capacity under a high-rate condition (5 C). Our simple approach enables ultrafast, large-area fabrication of nanoarchitectures that can stabilize the Li metal anode. We believe that further development in conjunction with a roll-to-roll process will accelerate the commercialization of Li metal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Room-Temperature Synthesis of Au@AuCu Alloyed Nanorods in Aqueous Solutions for High Catalytic Activity and Enhanced Stability Achieving High Quantum Efficiency in Cs3Cu2I5 Nanocrystals by the A-Site Ion Substitution for Flexible Blue Electroluminescence Devices and Enhanced Photovoltaic Cells Manganese and Cobalt Heterostructures in Carbon Aerogels for the Improved Electrochemical Performance of Supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1