三阶两步 Runge-Kutta-Chebyshev 方法

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Journal of Computational and Applied Mathematics Pub Date : 2024-09-26 DOI:10.1016/j.cam.2024.116291
{"title":"三阶两步 Runge-Kutta-Chebyshev 方法","authors":"","doi":"10.1016/j.cam.2024.116291","DOIUrl":null,"url":null,"abstract":"<div><div>The well-known high order stabilized codes (such as DUMKA and ROCK) have several drawbacks: numerically obtained stability polynomials (which do not have a closed analytic form), poor internal stability and convergence. RKC-type methods have much better computational properties. However, these types of methods currently have a second order maximum. In this paper, a family of third order stabilized methods with an explicit analytical solution of stability polynomials is presented. This was made possible by usage of two-step Runge–Kutta methods. A new code TSRKC3 is proposed, illustrated by several examples, and compared to existing programs.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Third order two-step Runge–Kutta–Chebyshev methods\",\"authors\":\"\",\"doi\":\"10.1016/j.cam.2024.116291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The well-known high order stabilized codes (such as DUMKA and ROCK) have several drawbacks: numerically obtained stability polynomials (which do not have a closed analytic form), poor internal stability and convergence. RKC-type methods have much better computational properties. However, these types of methods currently have a second order maximum. In this paper, a family of third order stabilized methods with an explicit analytical solution of stability polynomials is presented. This was made possible by usage of two-step Runge–Kutta methods. A new code TSRKC3 is proposed, illustrated by several examples, and compared to existing programs.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005399\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005399","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

众所周知的高阶稳定代码(如 DUMKA 和 ROCK)有几个缺点:数值获得的稳定多项式(没有封闭的解析形式)、内部稳定性和收敛性差。RKC 类方法的计算性能要好得多。然而,这类方法目前只有二阶最大值。本文提出了一系列三阶稳定方法,这些方法具有明确的稳定多项式解析解。这是通过使用两步 Runge-Kutta 方法实现的。本文提出了一种新代码 TSRKC3,并通过几个例子进行了说明,还与现有程序进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Third order two-step Runge–Kutta–Chebyshev methods
The well-known high order stabilized codes (such as DUMKA and ROCK) have several drawbacks: numerically obtained stability polynomials (which do not have a closed analytic form), poor internal stability and convergence. RKC-type methods have much better computational properties. However, these types of methods currently have a second order maximum. In this paper, a family of third order stabilized methods with an explicit analytical solution of stability polynomials is presented. This was made possible by usage of two-step Runge–Kutta methods. A new code TSRKC3 is proposed, illustrated by several examples, and compared to existing programs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
期刊最新文献
Third order two-step Runge–Kutta–Chebyshev methods Finite difference methods for stochastic Helmholtz equation driven by white noise Poisson noise removal based on non-convex hybrid regularizers Robust H∞ control for LFC of discrete T–S fuzzy MAPS with DFIG and time-varying delays Fading regularization method for an inverse boundary value problem associated with the biharmonic equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1