医疗和保健分析研究中机器学习应用的演变:文献计量分析

Samuel-Soma M. Ajibade , Gloria Nnadwa Alhassan , Abdelhamid Zaidi , Olukayode Ayodele Oki , Joseph Bamidele Awotunde , Emeka Ogbuju , Kayode A. Akintoye
{"title":"医疗和保健分析研究中机器学习应用的演变:文献计量分析","authors":"Samuel-Soma M. Ajibade ,&nbsp;Gloria Nnadwa Alhassan ,&nbsp;Abdelhamid Zaidi ,&nbsp;Olukayode Ayodele Oki ,&nbsp;Joseph Bamidele Awotunde ,&nbsp;Emeka Ogbuju ,&nbsp;Kayode A. Akintoye","doi":"10.1016/j.iswa.2024.200441","DOIUrl":null,"url":null,"abstract":"<div><div>This bibliometric research explores the global evolution of machine learning applications in medical and healthcare research for 3 decades (1994 to 2023). The study applies data mining techniques to a comprehensive dataset of published articles related to machine learning applications in the medical and healthcare sectors. The data extraction process includes the retrieval of relevant information from the source sources such as journals, books, and conference proceedings. An analysis of the extracted data is then conducted to identify the trends in the machine learning applications in medical and healthcare research. The Results revealed the publications published and indexed in the Scopus and PubMed database over the last 30 years. Bibliometric Analysis revealed that funding played a more significant role in publication productivity compared to collaboration (co-authorships), particularly at the country level. Hotspots analysis revealed three core research themes on MLHC research hence demonstrating the importance of machine learning applications to medical and healthcare research. Further, the study showed that the MLHC research landscape has largely focused on ML applications to tackle various issues ranging from chronic medical challenges (e.g., cardiological diseases) to patient data security. The findings of this research may be useful to policy makers and practitioners in the medical and healthcare sectors and to global research endeavours in the field. Future studies could include addressing issues such as growing ethical considerations, integration, and practical applications in wearable technology, IoT, and smart healthcare systems.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"24 ","pages":"Article 200441"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of machine learning applications in medical and healthcare analytics research: A bibliometric analysis\",\"authors\":\"Samuel-Soma M. Ajibade ,&nbsp;Gloria Nnadwa Alhassan ,&nbsp;Abdelhamid Zaidi ,&nbsp;Olukayode Ayodele Oki ,&nbsp;Joseph Bamidele Awotunde ,&nbsp;Emeka Ogbuju ,&nbsp;Kayode A. Akintoye\",\"doi\":\"10.1016/j.iswa.2024.200441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This bibliometric research explores the global evolution of machine learning applications in medical and healthcare research for 3 decades (1994 to 2023). The study applies data mining techniques to a comprehensive dataset of published articles related to machine learning applications in the medical and healthcare sectors. The data extraction process includes the retrieval of relevant information from the source sources such as journals, books, and conference proceedings. An analysis of the extracted data is then conducted to identify the trends in the machine learning applications in medical and healthcare research. The Results revealed the publications published and indexed in the Scopus and PubMed database over the last 30 years. Bibliometric Analysis revealed that funding played a more significant role in publication productivity compared to collaboration (co-authorships), particularly at the country level. Hotspots analysis revealed three core research themes on MLHC research hence demonstrating the importance of machine learning applications to medical and healthcare research. Further, the study showed that the MLHC research landscape has largely focused on ML applications to tackle various issues ranging from chronic medical challenges (e.g., cardiological diseases) to patient data security. The findings of this research may be useful to policy makers and practitioners in the medical and healthcare sectors and to global research endeavours in the field. Future studies could include addressing issues such as growing ethical considerations, integration, and practical applications in wearable technology, IoT, and smart healthcare systems.</div></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"24 \",\"pages\":\"Article 200441\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667305324001157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324001157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项文献计量学研究探讨了机器学习在医疗和保健研究领域的应用在三十年间(1994 年至 2023 年)的全球演变情况。该研究将数据挖掘技术应用于一个全面的数据集,该数据集包含与医疗和保健领域机器学习应用相关的已发表文章。数据提取过程包括从期刊、书籍和会议论文集等来源中检索相关信息。然后对提取的数据进行分析,以确定医疗和保健研究中机器学习应用的趋势。结果显示了过去 30 年中在 Scopus 和 PubMed 数据库中发表和索引的出版物。文献计量分析表明,与合作(合著)相比,资金在论文发表率中发挥着更重要的作用,尤其是在国家层面。热点分析揭示了 MLHC 研究的三个核心研究主题,从而证明了机器学习应用在医疗和保健研究中的重要性。此外,研究还表明,多语言医疗保健的研究领域主要集中在机器学习应用方面,以解决从慢性医疗挑战(如心脏病)到患者数据安全等各种问题。这项研究的结果可能对医疗和保健领域的政策制定者和从业人员以及该领域的全球研究工作有所帮助。未来的研究可能包括解决可穿戴技术、物联网和智能医疗系统中日益增长的伦理考虑、整合和实际应用等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution of machine learning applications in medical and healthcare analytics research: A bibliometric analysis
This bibliometric research explores the global evolution of machine learning applications in medical and healthcare research for 3 decades (1994 to 2023). The study applies data mining techniques to a comprehensive dataset of published articles related to machine learning applications in the medical and healthcare sectors. The data extraction process includes the retrieval of relevant information from the source sources such as journals, books, and conference proceedings. An analysis of the extracted data is then conducted to identify the trends in the machine learning applications in medical and healthcare research. The Results revealed the publications published and indexed in the Scopus and PubMed database over the last 30 years. Bibliometric Analysis revealed that funding played a more significant role in publication productivity compared to collaboration (co-authorships), particularly at the country level. Hotspots analysis revealed three core research themes on MLHC research hence demonstrating the importance of machine learning applications to medical and healthcare research. Further, the study showed that the MLHC research landscape has largely focused on ML applications to tackle various issues ranging from chronic medical challenges (e.g., cardiological diseases) to patient data security. The findings of this research may be useful to policy makers and practitioners in the medical and healthcare sectors and to global research endeavours in the field. Future studies could include addressing issues such as growing ethical considerations, integration, and practical applications in wearable technology, IoT, and smart healthcare systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
期刊最新文献
MapReduce teaching learning based optimization algorithm for solving CEC-2013 LSGO benchmark Testsuit Intelligent gear decision method for vehicle automatic transmission system based on data mining Design and implementation of EventsKG for situational monitoring and security intelligence in India: An open-source intelligence gathering approach Ideological orientation and extremism detection in online social networking sites: A systematic review Multi-objective optimization of power networks integrating electric vehicles and wind energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1