用于封装放射性活性金属的磷酸镁水泥的辐射稳定性和耐久性

IF 3.3 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY Progress in Nuclear Energy Pub Date : 2024-09-27 DOI:10.1016/j.pnucene.2024.105463
{"title":"用于封装放射性活性金属的磷酸镁水泥的辐射稳定性和耐久性","authors":"","doi":"10.1016/j.pnucene.2024.105463","DOIUrl":null,"url":null,"abstract":"<div><div>The encapsulation of Radioactive Reactive Metallic Waste (RRMW) in ordinary Portland cement poses significant challenges due to its incompatibility with the alkaline environment of the matrix. To address this issue, magnesium phosphate cements (MPC) emerge as potential solutions for the safe and effective immobilisation of RRMWs. The radiation stability and durability of an optimised formulation have been examined for samples irradiated up to 1000 kGy, in particular concerning the leaching behaviour of the three main constituents of the cement hydration products, and on four artificially added elements used to simulate radionuclides commonly found in radioactive waste (caesium, strontium, europium, and cobalt). The mortars exhibited excellent leaching behaviour and a high mechanical resistance, even after irradiation, freeze-thaw cycles, and water immersion. No significant radiation-induced effects were observed in the mineralogical and microstructural properties of the mortars, thus supporting their stability at the examined doses. Having verified the compliance with the main Italian waste acceptance criteria, the results of this research represent an encouraging step for the future implementation of MPCs for RRMWs conditioning.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiation stability and durability of magnesium phosphate cement for radioactive reactive metals encapsulation\",\"authors\":\"\",\"doi\":\"10.1016/j.pnucene.2024.105463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The encapsulation of Radioactive Reactive Metallic Waste (RRMW) in ordinary Portland cement poses significant challenges due to its incompatibility with the alkaline environment of the matrix. To address this issue, magnesium phosphate cements (MPC) emerge as potential solutions for the safe and effective immobilisation of RRMWs. The radiation stability and durability of an optimised formulation have been examined for samples irradiated up to 1000 kGy, in particular concerning the leaching behaviour of the three main constituents of the cement hydration products, and on four artificially added elements used to simulate radionuclides commonly found in radioactive waste (caesium, strontium, europium, and cobalt). The mortars exhibited excellent leaching behaviour and a high mechanical resistance, even after irradiation, freeze-thaw cycles, and water immersion. No significant radiation-induced effects were observed in the mineralogical and microstructural properties of the mortars, thus supporting their stability at the examined doses. Having verified the compliance with the main Italian waste acceptance criteria, the results of this research represent an encouraging step for the future implementation of MPCs for RRMWs conditioning.</div></div>\",\"PeriodicalId\":20617,\"journal\":{\"name\":\"Progress in Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014919702400413X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014919702400413X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于普通波特兰水泥与基质的碱性环境不相容,在普通波特兰水泥中封装放射性反应金属废物(RRMW)面临着巨大挑战。为解决这一问题,磷酸镁水泥(MPC)成为安全有效地固定放射性反应金属废物的潜在解决方案。针对辐照度高达 1000 kGy 的样品,对优化配方的辐射稳定性和耐久性进行了研究,特别是水泥水化产物中三种主要成分的浸出行为,以及用于模拟放射性废物中常见放射性核素(铯、锶、铕和钴)的四种人工添加元素的浸出行为。即使在经过辐照、冻融循环和水浸泡后,灰泥仍表现出优异的浸出性能和较高的机械耐受性。在灰泥的矿物学和微观结构特性方面,没有观察到明显的辐射诱导效应,因此证明了它们在检测剂量下的稳定性。在验证了符合意大利主要废弃物验收标准之后,这项研究成果为今后在 RRMWs 调节中使用 MPCs 迈出了令人鼓舞的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radiation stability and durability of magnesium phosphate cement for radioactive reactive metals encapsulation
The encapsulation of Radioactive Reactive Metallic Waste (RRMW) in ordinary Portland cement poses significant challenges due to its incompatibility with the alkaline environment of the matrix. To address this issue, magnesium phosphate cements (MPC) emerge as potential solutions for the safe and effective immobilisation of RRMWs. The radiation stability and durability of an optimised formulation have been examined for samples irradiated up to 1000 kGy, in particular concerning the leaching behaviour of the three main constituents of the cement hydration products, and on four artificially added elements used to simulate radionuclides commonly found in radioactive waste (caesium, strontium, europium, and cobalt). The mortars exhibited excellent leaching behaviour and a high mechanical resistance, even after irradiation, freeze-thaw cycles, and water immersion. No significant radiation-induced effects were observed in the mineralogical and microstructural properties of the mortars, thus supporting their stability at the examined doses. Having verified the compliance with the main Italian waste acceptance criteria, the results of this research represent an encouraging step for the future implementation of MPCs for RRMWs conditioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Nuclear Energy
Progress in Nuclear Energy 工程技术-核科学技术
CiteScore
5.30
自引率
14.80%
发文量
331
审稿时长
3.5 months
期刊介绍: Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field. Please note the following: 1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy. 2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc. 3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.
期刊最新文献
Experimental and theoretical research on upper plenum entrainment with air-water and steam-water Measurement of helium thermophysical properties and modification of the calculation models in the KTA 3102.1 report Enhancing the effective temperature model for typical UO2 fuel in criticality calculations Comparison and analysis of combustion characteristics and interference effect between single burning sodium jet and the dual-jets Research on impeller cutting of the nuclear pump based on MCSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1