利用形式概念分析实现非标准数据的数据深度函数

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2024-09-19 DOI:10.1016/j.jmva.2024.105372
Hannah Blocher, Georg Schollmeyer
{"title":"利用形式概念分析实现非标准数据的数据深度函数","authors":"Hannah Blocher,&nbsp;Georg Schollmeyer","doi":"10.1016/j.jmva.2024.105372","DOIUrl":null,"url":null,"abstract":"<div><div>In this article we introduce a notion of depth functions for data types that are not given in standard statistical data formats. We focus on data that cannot be represented by one specific data structure, such as normed vector spaces. This covers a wide range of different data types, which we refer to as non-standard data. Depth functions have been studied intensively for normed vector spaces. However, a discussion of depth functions for non-standard data is lacking. In this article, we address this gap by using formal concept analysis to obtain a unified data representation. Building on this representation, we then define depth functions for non-standard data. Furthermore, we provide a systematic basis by introducing structural properties using the data representation provided by formal concept analysis. Finally, we embed the generalised Tukey depth into our concept of data depth and analyse it using the introduced structural properties. Thus, this article presents the mathematical formalisation of centrality and outlyingness for non-standard data and increases the number of spaces in which centrality can be discussed. In particular, we provide a basis for defining further depth functions and statistical inference methods for non-standard data.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"205 ","pages":"Article 105372"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data depth functions for non-standard data by use of formal concept analysis\",\"authors\":\"Hannah Blocher,&nbsp;Georg Schollmeyer\",\"doi\":\"10.1016/j.jmva.2024.105372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article we introduce a notion of depth functions for data types that are not given in standard statistical data formats. We focus on data that cannot be represented by one specific data structure, such as normed vector spaces. This covers a wide range of different data types, which we refer to as non-standard data. Depth functions have been studied intensively for normed vector spaces. However, a discussion of depth functions for non-standard data is lacking. In this article, we address this gap by using formal concept analysis to obtain a unified data representation. Building on this representation, we then define depth functions for non-standard data. Furthermore, we provide a systematic basis by introducing structural properties using the data representation provided by formal concept analysis. Finally, we embed the generalised Tukey depth into our concept of data depth and analyse it using the introduced structural properties. Thus, this article presents the mathematical formalisation of centrality and outlyingness for non-standard data and increases the number of spaces in which centrality can be discussed. In particular, we provide a basis for defining further depth functions and statistical inference methods for non-standard data.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"205 \",\"pages\":\"Article 105372\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000794\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000794","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们为标准统计数据格式中未给出的数据类型引入了深度函数的概念。我们将重点放在无法用一种特定数据结构表示的数据上,例如规范向量空间。这涵盖了各种不同的数据类型,我们称之为非标准数据。对于规范向量空间,深度函数已经得到了深入研究。然而,对于非标准数据的深度函数却缺乏讨论。在本文中,我们通过使用形式概念分析来获得统一的数据表示,从而弥补了这一空白。在此表示法的基础上,我们定义了非标准数据的深度函数。此外,我们还利用形式概念分析提供的数据表示引入了结构属性,从而提供了一个系统化的基础。最后,我们将广义图基深度嵌入到我们的数据深度概念中,并利用引入的结构属性对其进行分析。因此,本文提出了非标准数据的中心性和离散性的数学形式化,并增加了可讨论中心性的空间数量。特别是,我们为进一步定义非标准数据的深度函数和统计推断方法提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data depth functions for non-standard data by use of formal concept analysis
In this article we introduce a notion of depth functions for data types that are not given in standard statistical data formats. We focus on data that cannot be represented by one specific data structure, such as normed vector spaces. This covers a wide range of different data types, which we refer to as non-standard data. Depth functions have been studied intensively for normed vector spaces. However, a discussion of depth functions for non-standard data is lacking. In this article, we address this gap by using formal concept analysis to obtain a unified data representation. Building on this representation, we then define depth functions for non-standard data. Furthermore, we provide a systematic basis by introducing structural properties using the data representation provided by formal concept analysis. Finally, we embed the generalised Tukey depth into our concept of data depth and analyse it using the introduced structural properties. Thus, this article presents the mathematical formalisation of centrality and outlyingness for non-standard data and increases the number of spaces in which centrality can be discussed. In particular, we provide a basis for defining further depth functions and statistical inference methods for non-standard data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Maximum likelihood estimation of elliptical tail Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors A conditional distribution function-based measure for independence and K-sample tests in multivariate data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1