Zong Meng, Xiangyu Qin, Jingbo Liu, Jimeng Li, Fenjie Fan
{"title":"基于 ARIMA 和竞争性 K-SVD 的去噪算法用于滚动轴承故障诊断","authors":"Zong Meng, Xiangyu Qin, Jingbo Liu, Jimeng Li, Fenjie Fan","doi":"10.1016/j.apacoust.2024.110309","DOIUrl":null,"url":null,"abstract":"<div><div>Rolling bearings are extensively employed in industrial production as essential support components for rotating machinery. However, under conditions of high load and harsh operation, bearings are highly susceptible to failure. The weak vibration signals associated with these failures may be obscured by complex harmonic interference and strong noise, posing challenges for the accurate diagnosis of rolling bearing failures. In this paper, an autoregressive integrated moving average and competitive K-singular value decomposition (ARIMA-CK-SVD) algorithm is proposed to realize effective extraction of faulty pulse signals in a strong interference environment. First, the ARIMA model is used to preprocess the original signal to eliminate the interference of harmonic components. Second, a method is proposed for the adaptive selection of parameters in the ARIMA model, with consideration given to the characteristics of K-SVD. Subsequently, a competitive mechanism is introduced during the dictionary update phase of the algorithm to adjust the pattern of atomic updates and eliminate noise atoms. Finally, the effectiveness of the ARIMA-CK-SVD has been validated through simulation experiments and engineering tests.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A denoising algorithm based on ARIMA and competitive K-SVD for the diagnosis of rolling bearing faults\",\"authors\":\"Zong Meng, Xiangyu Qin, Jingbo Liu, Jimeng Li, Fenjie Fan\",\"doi\":\"10.1016/j.apacoust.2024.110309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rolling bearings are extensively employed in industrial production as essential support components for rotating machinery. However, under conditions of high load and harsh operation, bearings are highly susceptible to failure. The weak vibration signals associated with these failures may be obscured by complex harmonic interference and strong noise, posing challenges for the accurate diagnosis of rolling bearing failures. In this paper, an autoregressive integrated moving average and competitive K-singular value decomposition (ARIMA-CK-SVD) algorithm is proposed to realize effective extraction of faulty pulse signals in a strong interference environment. First, the ARIMA model is used to preprocess the original signal to eliminate the interference of harmonic components. Second, a method is proposed for the adaptive selection of parameters in the ARIMA model, with consideration given to the characteristics of K-SVD. Subsequently, a competitive mechanism is introduced during the dictionary update phase of the algorithm to adjust the pattern of atomic updates and eliminate noise atoms. Finally, the effectiveness of the ARIMA-CK-SVD has been validated through simulation experiments and engineering tests.</div></div>\",\"PeriodicalId\":55506,\"journal\":{\"name\":\"Applied Acoustics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003682X24004602\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24004602","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
A denoising algorithm based on ARIMA and competitive K-SVD for the diagnosis of rolling bearing faults
Rolling bearings are extensively employed in industrial production as essential support components for rotating machinery. However, under conditions of high load and harsh operation, bearings are highly susceptible to failure. The weak vibration signals associated with these failures may be obscured by complex harmonic interference and strong noise, posing challenges for the accurate diagnosis of rolling bearing failures. In this paper, an autoregressive integrated moving average and competitive K-singular value decomposition (ARIMA-CK-SVD) algorithm is proposed to realize effective extraction of faulty pulse signals in a strong interference environment. First, the ARIMA model is used to preprocess the original signal to eliminate the interference of harmonic components. Second, a method is proposed for the adaptive selection of parameters in the ARIMA model, with consideration given to the characteristics of K-SVD. Subsequently, a competitive mechanism is introduced during the dictionary update phase of the algorithm to adjust the pattern of atomic updates and eliminate noise atoms. Finally, the effectiveness of the ARIMA-CK-SVD has been validated through simulation experiments and engineering tests.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.