Heng Chen, Longhui Nie, Yiqiong Yang, Caihong Fang, Xingru Chen, Xueling Li
{"title":"ZIF-67 衍生 Co3O4@CN 辅助 g-C3N4 用于高效光催化过氧化氢生产","authors":"Heng Chen, Longhui Nie, Yiqiong Yang, Caihong Fang, Xingru Chen, Xueling Li","doi":"10.1016/j.mcat.2024.114584","DOIUrl":null,"url":null,"abstract":"<div><div>The conversion of solar energy into chemical energy can be realized by photocatalytic technology, which is also used for hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production because of its clean and eco-friendly properties. Here, g-C<sub>3</sub>N<sub>4</sub> (GCN) was coupled with the ZIF-67 derivate (Co<sub>3</sub>O<sub>4</sub>@CN) by a thermal treatment to obtain the ZCN-X (<em>X</em> = 5, 10, 15 mg of ZIF-67) composite photocatalyst for H<sub>2</sub>O<sub>2</sub> production for the first time. ZCN-10 showed the optimal photocatalytic H<sub>2</sub>O<sub>2</sub> production efficiency of 531.1 μM (or 2655.3 µmol⋅g<sup>-1</sup>⋅h<sup>-1</sup>) in one hour, which was 3.49 times that of GCN (152.0 μM). ZCN-10 also showed relatively good stability of photocatalytic H<sub>2</sub>O<sub>2</sub> production with a slight decrease after five cycles. The introduction of Co<sub>3</sub>O<sub>4</sub>@CN on GCN increases the catalyst's specific surface area, visible light adsorption, surface-adsorbed oxygen content, and separation efficiency of photogenerated carriers, which jointly cause a large increase in photocatalytic H<sub>2</sub>O<sub>2</sub> production. The mechanism for H<sub>2</sub>O<sub>2</sub> production was proved to be a two-step one-electron oxygen reduction reaction (ORR) pathway. This work would shed light on the fabrication of g-C<sub>3</sub>N<sub>4</sub>-based photocatalysts with high performance for H<sub>2</sub>O<sub>2</sub> production.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114584"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZIF-67-derived Co3O4@CN-assisted g-C3N4 for efficient photocatalytic hydrogen peroxide production\",\"authors\":\"Heng Chen, Longhui Nie, Yiqiong Yang, Caihong Fang, Xingru Chen, Xueling Li\",\"doi\":\"10.1016/j.mcat.2024.114584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The conversion of solar energy into chemical energy can be realized by photocatalytic technology, which is also used for hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production because of its clean and eco-friendly properties. Here, g-C<sub>3</sub>N<sub>4</sub> (GCN) was coupled with the ZIF-67 derivate (Co<sub>3</sub>O<sub>4</sub>@CN) by a thermal treatment to obtain the ZCN-X (<em>X</em> = 5, 10, 15 mg of ZIF-67) composite photocatalyst for H<sub>2</sub>O<sub>2</sub> production for the first time. ZCN-10 showed the optimal photocatalytic H<sub>2</sub>O<sub>2</sub> production efficiency of 531.1 μM (or 2655.3 µmol⋅g<sup>-1</sup>⋅h<sup>-1</sup>) in one hour, which was 3.49 times that of GCN (152.0 μM). ZCN-10 also showed relatively good stability of photocatalytic H<sub>2</sub>O<sub>2</sub> production with a slight decrease after five cycles. The introduction of Co<sub>3</sub>O<sub>4</sub>@CN on GCN increases the catalyst's specific surface area, visible light adsorption, surface-adsorbed oxygen content, and separation efficiency of photogenerated carriers, which jointly cause a large increase in photocatalytic H<sub>2</sub>O<sub>2</sub> production. The mechanism for H<sub>2</sub>O<sub>2</sub> production was proved to be a two-step one-electron oxygen reduction reaction (ORR) pathway. This work would shed light on the fabrication of g-C<sub>3</sub>N<sub>4</sub>-based photocatalysts with high performance for H<sub>2</sub>O<sub>2</sub> production.</div></div>\",\"PeriodicalId\":393,\"journal\":{\"name\":\"Molecular Catalysis\",\"volume\":\"569 \",\"pages\":\"Article 114584\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468823124007661\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124007661","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
ZIF-67-derived Co3O4@CN-assisted g-C3N4 for efficient photocatalytic hydrogen peroxide production
The conversion of solar energy into chemical energy can be realized by photocatalytic technology, which is also used for hydrogen peroxide (H2O2) production because of its clean and eco-friendly properties. Here, g-C3N4 (GCN) was coupled with the ZIF-67 derivate (Co3O4@CN) by a thermal treatment to obtain the ZCN-X (X = 5, 10, 15 mg of ZIF-67) composite photocatalyst for H2O2 production for the first time. ZCN-10 showed the optimal photocatalytic H2O2 production efficiency of 531.1 μM (or 2655.3 µmol⋅g-1⋅h-1) in one hour, which was 3.49 times that of GCN (152.0 μM). ZCN-10 also showed relatively good stability of photocatalytic H2O2 production with a slight decrease after five cycles. The introduction of Co3O4@CN on GCN increases the catalyst's specific surface area, visible light adsorption, surface-adsorbed oxygen content, and separation efficiency of photogenerated carriers, which jointly cause a large increase in photocatalytic H2O2 production. The mechanism for H2O2 production was proved to be a two-step one-electron oxygen reduction reaction (ORR) pathway. This work would shed light on the fabrication of g-C3N4-based photocatalysts with high performance for H2O2 production.
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods