{"title":"利用空间外差分光计进行实用高分辨率光谱分析:确定线形恢复的仪器功能","authors":"Xunyu Li, Jens Riedel, Yi You","doi":"10.1016/j.sab.2024.107053","DOIUrl":null,"url":null,"abstract":"<div><div>The spatial heterodyne spectrometer (SHS) is a well-recognized platform for its high resolving power in various use cases of spectroscopy. Same as other spectrometer topologies, the SHS, unfortunately, also suffers from classical challenges such as distorted lineshape due to the instrumental function. The goal of this work is to tackle this persisting issue through a simple numerical approach. With the inherent characteristics of an SHS interferogram, we report the direct extraction and determination of the instrumental function in its numerical representation from an SHS interferogram; this instrumental function was further used for spectral data processing that enables significant improvements in spectral resolution through deconvolution algorithms.</div><div>Here, we systematically discuss the recognition of the embedded instrumental function among various ingredients within an interferogram. To verify the numerical approach, lithium was chosen as the model sample, resembling the use of SHS in an isotopic analysis application. Specifically, the resonance transition of lithium D-lines (<sup>2</sup>P<sub>1/2,3/2</sub> ← <sup>2</sup>S<sub>1/2</sub>) was selected to assess the performance of the spectral processing. With the spectral deconvolution, the spectral features that represent the <sup>6</sup>Li and <sup>7</sup>Li were nearly baseline-separated, allowing for the accurate measure of the isotopic abundance without external references or algorithm adjustments (e.g., curve fitting).</div></div>","PeriodicalId":21890,"journal":{"name":"Spectrochimica Acta Part B: Atomic Spectroscopy","volume":"221 ","pages":"Article 107053"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical high-resolution spectroscopy with a spatial heterodyne spectrometer: Determination of instrumental function for lineshape recovery\",\"authors\":\"Xunyu Li, Jens Riedel, Yi You\",\"doi\":\"10.1016/j.sab.2024.107053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The spatial heterodyne spectrometer (SHS) is a well-recognized platform for its high resolving power in various use cases of spectroscopy. Same as other spectrometer topologies, the SHS, unfortunately, also suffers from classical challenges such as distorted lineshape due to the instrumental function. The goal of this work is to tackle this persisting issue through a simple numerical approach. With the inherent characteristics of an SHS interferogram, we report the direct extraction and determination of the instrumental function in its numerical representation from an SHS interferogram; this instrumental function was further used for spectral data processing that enables significant improvements in spectral resolution through deconvolution algorithms.</div><div>Here, we systematically discuss the recognition of the embedded instrumental function among various ingredients within an interferogram. To verify the numerical approach, lithium was chosen as the model sample, resembling the use of SHS in an isotopic analysis application. Specifically, the resonance transition of lithium D-lines (<sup>2</sup>P<sub>1/2,3/2</sub> ← <sup>2</sup>S<sub>1/2</sub>) was selected to assess the performance of the spectral processing. With the spectral deconvolution, the spectral features that represent the <sup>6</sup>Li and <sup>7</sup>Li were nearly baseline-separated, allowing for the accurate measure of the isotopic abundance without external references or algorithm adjustments (e.g., curve fitting).</div></div>\",\"PeriodicalId\":21890,\"journal\":{\"name\":\"Spectrochimica Acta Part B: Atomic Spectroscopy\",\"volume\":\"221 \",\"pages\":\"Article 107053\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part B: Atomic Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0584854724001976\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part B: Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0584854724001976","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Practical high-resolution spectroscopy with a spatial heterodyne spectrometer: Determination of instrumental function for lineshape recovery
The spatial heterodyne spectrometer (SHS) is a well-recognized platform for its high resolving power in various use cases of spectroscopy. Same as other spectrometer topologies, the SHS, unfortunately, also suffers from classical challenges such as distorted lineshape due to the instrumental function. The goal of this work is to tackle this persisting issue through a simple numerical approach. With the inherent characteristics of an SHS interferogram, we report the direct extraction and determination of the instrumental function in its numerical representation from an SHS interferogram; this instrumental function was further used for spectral data processing that enables significant improvements in spectral resolution through deconvolution algorithms.
Here, we systematically discuss the recognition of the embedded instrumental function among various ingredients within an interferogram. To verify the numerical approach, lithium was chosen as the model sample, resembling the use of SHS in an isotopic analysis application. Specifically, the resonance transition of lithium D-lines (2P1/2,3/2 ← 2S1/2) was selected to assess the performance of the spectral processing. With the spectral deconvolution, the spectral features that represent the 6Li and 7Li were nearly baseline-separated, allowing for the accurate measure of the isotopic abundance without external references or algorithm adjustments (e.g., curve fitting).
期刊介绍:
Spectrochimica Acta Part B: Atomic Spectroscopy, is intended for the rapid publication of both original work and reviews in the following fields:
Atomic Emission (AES), Atomic Absorption (AAS) and Atomic Fluorescence (AFS) spectroscopy;
Mass Spectrometry (MS) for inorganic analysis covering Spark Source (SS-MS), Inductively Coupled Plasma (ICP-MS), Glow Discharge (GD-MS), and Secondary Ion Mass Spectrometry (SIMS).
Laser induced atomic spectroscopy for inorganic analysis, including non-linear optical laser spectroscopy, covering Laser Enhanced Ionization (LEI), Laser Induced Fluorescence (LIF), Resonance Ionization Spectroscopy (RIS) and Resonance Ionization Mass Spectrometry (RIMS); Laser Induced Breakdown Spectroscopy (LIBS); Cavity Ringdown Spectroscopy (CRDS), Laser Ablation Inductively Coupled Plasma Atomic Emission Spectroscopy (LA-ICP-AES) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS).
X-ray spectrometry, X-ray Optics and Microanalysis, including X-ray fluorescence spectrometry (XRF) and related techniques, in particular Total-reflection X-ray Fluorescence Spectrometry (TXRF), and Synchrotron Radiation-excited Total reflection XRF (SR-TXRF).
Manuscripts dealing with (i) fundamentals, (ii) methodology development, (iii)instrumentation, and (iv) applications, can be submitted for publication.