山区城市干线路网流量预测与实时调控

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-09-25 DOI:10.1016/j.jksuci.2024.102190
Xiaoyu Cai , Zimu Li , Jiajia Dai , Liang Lv , Bo Peng
{"title":"山区城市干线路网流量预测与实时调控","authors":"Xiaoyu Cai ,&nbsp;Zimu Li ,&nbsp;Jiajia Dai ,&nbsp;Liang Lv ,&nbsp;Bo Peng","doi":"10.1016/j.jksuci.2024.102190","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to enhance the understanding of vehicle path selection behavior within arterial road networks by investigating the influencing factors and analyzing spatial and temporal traffic flow distributions. Using radio frequency identification (RFID) travel data, key factors such as travel duration, route familiarity, route length, expressway ratio, arterial road ratio, and ramp ratio were identified. We then proposed an origin–destination path acquisition method and developed a route-selection prediction model based on a multinomial logit model with sample weights. Additionally, the study linked the traffic control scheme with travel time using the Bureau of Public Roads function—a model that illustrates the relationship between network-wide travel time and traffic demand—and developed an arterial road network traffic forecasting model. Verification showed that the prediction accuracy of the improved multinomial logit model increased from 92.55 % to 97.87 %. Furthermore, reducing the green time ratio for multilane merging from 0.75 to 0.5 significantly decreased the likelihood of vehicles choosing this route and reduced the number of vehicles passing through the ramp. The flow prediction model achieved a 97.9 % accuracy, accurately reflecting actual volume changes and ensuring smooth operation of the main airport road. This provides a strong foundation for developing effective traffic control plans.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow prediction of mountain cities arterial road network for real-time regulation\",\"authors\":\"Xiaoyu Cai ,&nbsp;Zimu Li ,&nbsp;Jiajia Dai ,&nbsp;Liang Lv ,&nbsp;Bo Peng\",\"doi\":\"10.1016/j.jksuci.2024.102190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aims to enhance the understanding of vehicle path selection behavior within arterial road networks by investigating the influencing factors and analyzing spatial and temporal traffic flow distributions. Using radio frequency identification (RFID) travel data, key factors such as travel duration, route familiarity, route length, expressway ratio, arterial road ratio, and ramp ratio were identified. We then proposed an origin–destination path acquisition method and developed a route-selection prediction model based on a multinomial logit model with sample weights. Additionally, the study linked the traffic control scheme with travel time using the Bureau of Public Roads function—a model that illustrates the relationship between network-wide travel time and traffic demand—and developed an arterial road network traffic forecasting model. Verification showed that the prediction accuracy of the improved multinomial logit model increased from 92.55 % to 97.87 %. Furthermore, reducing the green time ratio for multilane merging from 0.75 to 0.5 significantly decreased the likelihood of vehicles choosing this route and reduced the number of vehicles passing through the ramp. The flow prediction model achieved a 97.9 % accuracy, accurately reflecting actual volume changes and ensuring smooth operation of the main airport road. This provides a strong foundation for developing effective traffic control plans.</div></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002799\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002799","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过调查影响因素和分析时空交通流分布,加深对干道网络内车辆路径选择行为的理解。利用无线射频识别(RFID)出行数据,确定了出行时长、路线熟悉程度、路线长度、快速路比例、干道比例和匝道比例等关键因素。然后,我们提出了一种起点-终点路径获取方法,并开发了一个基于带样本权重的多叉 Logit 模型的路线选择预测模型。此外,该研究还利用公共道路局函数将交通管制方案与旅行时间联系起来--该函数模型说明了整个网络的旅行时间与交通需求之间的关系,并开发了一个干道网络交通量预测模型。验证结果表明,改进后的多叉 logit 模型的预测准确率从 92.55% 提高到 97.87%。此外,将多车道并线的绿灯时间比从 0.75 降低到 0.5,大大降低了车辆选择该路线的可能性,并减少了通过匝道的车辆数量。流量预测模型的准确率达到 97.9%,准确反映了实际流量变化,确保了机场主干道的顺畅运行。这为制定有效的交通管制计划奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flow prediction of mountain cities arterial road network for real-time regulation
This study aims to enhance the understanding of vehicle path selection behavior within arterial road networks by investigating the influencing factors and analyzing spatial and temporal traffic flow distributions. Using radio frequency identification (RFID) travel data, key factors such as travel duration, route familiarity, route length, expressway ratio, arterial road ratio, and ramp ratio were identified. We then proposed an origin–destination path acquisition method and developed a route-selection prediction model based on a multinomial logit model with sample weights. Additionally, the study linked the traffic control scheme with travel time using the Bureau of Public Roads function—a model that illustrates the relationship between network-wide travel time and traffic demand—and developed an arterial road network traffic forecasting model. Verification showed that the prediction accuracy of the improved multinomial logit model increased from 92.55 % to 97.87 %. Furthermore, reducing the green time ratio for multilane merging from 0.75 to 0.5 significantly decreased the likelihood of vehicles choosing this route and reduced the number of vehicles passing through the ramp. The flow prediction model achieved a 97.9 % accuracy, accurately reflecting actual volume changes and ensuring smooth operation of the main airport road. This provides a strong foundation for developing effective traffic control plans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
期刊最新文献
DNE-YOLO: A method for apple fruit detection in Diverse Natural Environments Quantum computing enhanced knowledge tracing: Personalized KT research for mitigating data sparsity TFDNet: A triple focus diffusion network for object detection in urban congestion with accurate multi-scale feature fusion and real-time capability DA-Net: A classification-guided network for dental anomaly detection from dental and maxillofacial images Energy-efficient resource allocation for UAV-aided full-duplex OFDMA wireless powered IoT communication networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1