利用基于补丁的梯度优化技术实现退化场景中的点-线 LIVO

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-09-23 DOI:10.1109/LRA.2024.3466088
Tong Shi;Kun Qian;Yixin Fang;Yun Zhang;Hai Yu
{"title":"利用基于补丁的梯度优化技术实现退化场景中的点-线 LIVO","authors":"Tong Shi;Kun Qian;Yixin Fang;Yun Zhang;Hai Yu","doi":"10.1109/LRA.2024.3466088","DOIUrl":null,"url":null,"abstract":"Simultaneous localization and mapping based on 3-D light detection and ranging (LiDAR) tends to degenerate in structural-less environments, leading to a distinct reduction in localization accuracy and mapping precision. This article proposes a point-line LiDAR-visual-inertial odometry (PL-LIVO) based on the system implementation of FAST-LIVO for robust localization in LiDAR-degenerate scenes. The key idea is integrating both points and lines into the proposed direct visual odometry subsystem (PL-DVO). By minimizing the patch-based gradient residuals for state optimization, PL-DVO provides additional constraints complementary to LiDAR. Furthermore, a LiDAR map assisted visual features depth extraction (LM-VDE) method is proposed to recover 3-D positions of visual features by mapping them onto the 3-D planes of the LiDAR map. This method is independent of the single scan's density and notable for superior generalization across various LiDAR sensors. Extensive experiments on both public datasets and our datasets demonstrate that PL-LIVO ensures robust localization and outperforms other state-of-the-art systems in LiDAR degenerate scenes.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Point-Line LIVO Using Patch-Based Gradient Optimization for Degenerate Scenes\",\"authors\":\"Tong Shi;Kun Qian;Yixin Fang;Yun Zhang;Hai Yu\",\"doi\":\"10.1109/LRA.2024.3466088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simultaneous localization and mapping based on 3-D light detection and ranging (LiDAR) tends to degenerate in structural-less environments, leading to a distinct reduction in localization accuracy and mapping precision. This article proposes a point-line LiDAR-visual-inertial odometry (PL-LIVO) based on the system implementation of FAST-LIVO for robust localization in LiDAR-degenerate scenes. The key idea is integrating both points and lines into the proposed direct visual odometry subsystem (PL-DVO). By minimizing the patch-based gradient residuals for state optimization, PL-DVO provides additional constraints complementary to LiDAR. Furthermore, a LiDAR map assisted visual features depth extraction (LM-VDE) method is proposed to recover 3-D positions of visual features by mapping them onto the 3-D planes of the LiDAR map. This method is independent of the single scan's density and notable for superior generalization across various LiDAR sensors. Extensive experiments on both public datasets and our datasets demonstrate that PL-LIVO ensures robust localization and outperforms other state-of-the-art systems in LiDAR degenerate scenes.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10688407/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10688407/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

在无结构环境中,基于三维光探测和测距(LiDAR)的同步定位和绘图往往会退化,导致定位精度和绘图精度明显降低。本文提出了一种基于 FAST-LIVO 系统实现的点-线激光雷达-视觉-惯性里程计(PL-LIVO),用于在激光雷达退化的场景中进行稳健定位。其关键思路是将点和线都集成到拟议的直接视觉里程测量子系统(PL-DVO)中。通过最小化基于光斑的梯度残差进行状态优化,PL-DVO 提供了与激光雷达互补的额外约束。此外,还提出了一种激光雷达地图辅助视觉特征深度提取(LM-VDE)方法,通过将视觉特征映射到激光雷达地图的三维平面上,恢复视觉特征的三维位置。该方法不受单次扫描密度的影响,在各种激光雷达传感器中具有显著的通用性。在公共数据集和我们的数据集上进行的大量实验表明,PL-LIVO 可确保在激光雷达退化场景中实现稳健的定位,并优于其他最先进的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Point-Line LIVO Using Patch-Based Gradient Optimization for Degenerate Scenes
Simultaneous localization and mapping based on 3-D light detection and ranging (LiDAR) tends to degenerate in structural-less environments, leading to a distinct reduction in localization accuracy and mapping precision. This article proposes a point-line LiDAR-visual-inertial odometry (PL-LIVO) based on the system implementation of FAST-LIVO for robust localization in LiDAR-degenerate scenes. The key idea is integrating both points and lines into the proposed direct visual odometry subsystem (PL-DVO). By minimizing the patch-based gradient residuals for state optimization, PL-DVO provides additional constraints complementary to LiDAR. Furthermore, a LiDAR map assisted visual features depth extraction (LM-VDE) method is proposed to recover 3-D positions of visual features by mapping them onto the 3-D planes of the LiDAR map. This method is independent of the single scan's density and notable for superior generalization across various LiDAR sensors. Extensive experiments on both public datasets and our datasets demonstrate that PL-LIVO ensures robust localization and outperforms other state-of-the-art systems in LiDAR degenerate scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints Virtual Obstacles Regulation for Multi-Agent Path Finding Shape Visual Servoing of a Cable Suspended Between Two Drones A Benchmark Dataset for Collaborative SLAM in Service Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1