论用于验证说话人的神经模型量化

IF 4.1 2区 计算机科学 Q1 ACOUSTICS IEEE/ACM Transactions on Audio, Speech, and Language Processing Pub Date : 2024-09-20 DOI:10.1109/TASLP.2024.3463430
Vishal Kumar;Vinayak Abrol;Mathew Magamai Doss
{"title":"论用于验证说话人的神经模型量化","authors":"Vishal Kumar;Vinayak Abrol;Mathew Magamai Doss","doi":"10.1109/TASLP.2024.3463430","DOIUrl":null,"url":null,"abstract":"This paper addresses the sub-optimality of current post-training quantization (PTQ) and quantization-aware training (QAT) methods for state-of-the-art speaker verification (SV) models featuring intricate architectural elements such as channel aggregation and squeeze excitation modules. To address these limitations, we propose 1) a data-independent PTQ technique employing iterative low-precision calibration on pre-trained models; and 2) a data-dependent QAT method designed to reduce the performance gap between full-precision and integer models. Our QAT involves two progressive stages where FP-32 weights are initially transformed into FP-8, adapting precision based on the gradient norm, followed by the learning of quantizer parameters (scale and zero-point) for INT8 conversion. Experimental validation underscores the ingenuity of our method in model quantization, demonstrating reduced floating-point operations and INT8 inference time, all while maintaining performance on par with full-precision models.","PeriodicalId":13332,"journal":{"name":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","volume":"32 ","pages":"4226-4236"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Quantization of Neural Models for Speaker Verification\",\"authors\":\"Vishal Kumar;Vinayak Abrol;Mathew Magamai Doss\",\"doi\":\"10.1109/TASLP.2024.3463430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the sub-optimality of current post-training quantization (PTQ) and quantization-aware training (QAT) methods for state-of-the-art speaker verification (SV) models featuring intricate architectural elements such as channel aggregation and squeeze excitation modules. To address these limitations, we propose 1) a data-independent PTQ technique employing iterative low-precision calibration on pre-trained models; and 2) a data-dependent QAT method designed to reduce the performance gap between full-precision and integer models. Our QAT involves two progressive stages where FP-32 weights are initially transformed into FP-8, adapting precision based on the gradient norm, followed by the learning of quantizer parameters (scale and zero-point) for INT8 conversion. Experimental validation underscores the ingenuity of our method in model quantization, demonstrating reduced floating-point operations and INT8 inference time, all while maintaining performance on par with full-precision models.\",\"PeriodicalId\":13332,\"journal\":{\"name\":\"IEEE/ACM Transactions on Audio, Speech, and Language Processing\",\"volume\":\"32 \",\"pages\":\"4226-4236\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Audio, Speech, and Language Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684732/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10684732/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了当前训练后量化(PTQ)和量化感知训练(QAT)方法对于具有复杂架构元素(如信道聚合和挤压激励模块)的最先进扬声器验证(SV)模型的次优化问题。为了解决这些局限性,我们提出了:1)一种与数据无关的 PTQ 技术,在预训练模型上采用迭代低精度校准;2)一种与数据无关的 QAT 方法,旨在缩小全精度模型和整数模型之间的性能差距。我们的 QAT 包括两个渐进阶段,首先将 FP-32 权重转换为 FP-8,根据梯度规范调整精度,然后学习量化器参数(标度和零点)以进行 INT8 转换。实验验证凸显了我们在模型量化方面的独创性,证明我们减少了浮点运算和 INT8 推理时间,同时保持了与全精度模型相同的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Quantization of Neural Models for Speaker Verification
This paper addresses the sub-optimality of current post-training quantization (PTQ) and quantization-aware training (QAT) methods for state-of-the-art speaker verification (SV) models featuring intricate architectural elements such as channel aggregation and squeeze excitation modules. To address these limitations, we propose 1) a data-independent PTQ technique employing iterative low-precision calibration on pre-trained models; and 2) a data-dependent QAT method designed to reduce the performance gap between full-precision and integer models. Our QAT involves two progressive stages where FP-32 weights are initially transformed into FP-8, adapting precision based on the gradient norm, followed by the learning of quantizer parameters (scale and zero-point) for INT8 conversion. Experimental validation underscores the ingenuity of our method in model quantization, demonstrating reduced floating-point operations and INT8 inference time, all while maintaining performance on par with full-precision models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE/ACM Transactions on Audio, Speech, and Language Processing
IEEE/ACM Transactions on Audio, Speech, and Language Processing ACOUSTICS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
11.30
自引率
11.10%
发文量
217
期刊介绍: The IEEE/ACM Transactions on Audio, Speech, and Language Processing covers audio, speech and language processing and the sciences that support them. In audio processing: transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. In speech processing: areas such as speech analysis, synthesis, coding, speech and speaker recognition, speech production and perception, and speech enhancement. In language processing: speech and text analysis, understanding, generation, dialog management, translation, summarization, question answering and document indexing and retrieval, as well as general language modeling.
期刊最新文献
CLAPSep: Leveraging Contrastive Pre-Trained Model for Multi-Modal Query-Conditioned Target Sound Extraction Enhancing Robustness of Speech Watermarking Using a Transformer-Based Framework Exploiting Acoustic Features FTDKD: Frequency-Time Domain Knowledge Distillation for Low-Quality Compressed Audio Deepfake Detection ELSF: Entity-Level Slot Filling Framework for Joint Multiple Intent Detection and Slot Filling Proper Error Estimation and Calibration for Attention-Based Encoder-Decoder Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1