{"title":"成熟 B 细胞中 PU.1 表达减少会诱发淋巴瘤。","authors":"Shinya Endo, Nao Nishimura, Kosuke Toyoda, Yoshihiro Komohara, Joaquim Carreras, Hiromichi Yuki, Takafumi Shichijo, Shikiko Ueno, Niina Ueno, Shinya Hirata, Yawara Kawano, Kisato Nosaka, Masashi Miyaoka, Naoya Nakamura, Ai Sato, Kiyoshi Ando, Hiroaki Mitsuya, Koichi Akashi, Daniel G Tenen, Jun-Ichirou Yasunaga, Masao Matsuoka, Yutaka Okuno, Hiro Tatetsu","doi":"10.1111/cas.16344","DOIUrl":null,"url":null,"abstract":"<p><p>Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma, accounting for 30% of non-Hodgkin lymphomas. Although comprehensive analysis of genetic abnormalities has led to the classification of lymphomas, the exact mechanism of lymphomagenesis remains elusive. The Ets family transcription factor, PU.1, encoded by Spi1, is essential for the development of myeloid and lymphoid cells. Our previous research illustrated the tumor suppressor function of PU.1 in classical Hodgkin lymphoma and myeloma cells. In the current study, we found that patients with DLBCL exhibited notably reduced PU.1 expression in their lymphoma cells, particularly in the non-germinal center B-cell-like (GCB) subtype. This observation suggests that downregulation of PU.1 may be implicated in DLBCL tumor growth. To further assess PU.1's role in mature B cells in vivo, we generated conditional Spi1 knockout mice using Cγ1-Cre mice. Remarkably, 13 of the 23 knockout mice (56%) showed splenomegaly, lymphadenopathy, or masses, with some having histologically confirmed B-cell lymphomas. In contrast, no wild-type mice developed B-cell lymphoma. In addition, RNA-seq analysis of lymphoma cells from Cγ1-Cre Spi1<sup>F/F</sup> mice showed high frequency of each monoclonal CDR3 sequence, indicating that these lymphoma cells were monoclonal tumor cells. When these B lymphoma cells were transplanted into immunodeficient recipient mice, all mice died within 3 weeks. Lentiviral-transduced Spi1 rescued 60% of the recipient mice, suggesting that PU.1 has a tumor suppressor function in vivo. Collectively, PU.1 is a tumor suppressor in mature B cells, and decreased PU.1 results in mature B-cell lymphoma development.</p>","PeriodicalId":48943,"journal":{"name":"Cancer Science","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decreased PU.1 expression in mature B cells induces lymphomagenesis.\",\"authors\":\"Shinya Endo, Nao Nishimura, Kosuke Toyoda, Yoshihiro Komohara, Joaquim Carreras, Hiromichi Yuki, Takafumi Shichijo, Shikiko Ueno, Niina Ueno, Shinya Hirata, Yawara Kawano, Kisato Nosaka, Masashi Miyaoka, Naoya Nakamura, Ai Sato, Kiyoshi Ando, Hiroaki Mitsuya, Koichi Akashi, Daniel G Tenen, Jun-Ichirou Yasunaga, Masao Matsuoka, Yutaka Okuno, Hiro Tatetsu\",\"doi\":\"10.1111/cas.16344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma, accounting for 30% of non-Hodgkin lymphomas. Although comprehensive analysis of genetic abnormalities has led to the classification of lymphomas, the exact mechanism of lymphomagenesis remains elusive. The Ets family transcription factor, PU.1, encoded by Spi1, is essential for the development of myeloid and lymphoid cells. Our previous research illustrated the tumor suppressor function of PU.1 in classical Hodgkin lymphoma and myeloma cells. In the current study, we found that patients with DLBCL exhibited notably reduced PU.1 expression in their lymphoma cells, particularly in the non-germinal center B-cell-like (GCB) subtype. This observation suggests that downregulation of PU.1 may be implicated in DLBCL tumor growth. To further assess PU.1's role in mature B cells in vivo, we generated conditional Spi1 knockout mice using Cγ1-Cre mice. Remarkably, 13 of the 23 knockout mice (56%) showed splenomegaly, lymphadenopathy, or masses, with some having histologically confirmed B-cell lymphomas. In contrast, no wild-type mice developed B-cell lymphoma. In addition, RNA-seq analysis of lymphoma cells from Cγ1-Cre Spi1<sup>F/F</sup> mice showed high frequency of each monoclonal CDR3 sequence, indicating that these lymphoma cells were monoclonal tumor cells. When these B lymphoma cells were transplanted into immunodeficient recipient mice, all mice died within 3 weeks. Lentiviral-transduced Spi1 rescued 60% of the recipient mice, suggesting that PU.1 has a tumor suppressor function in vivo. Collectively, PU.1 is a tumor suppressor in mature B cells, and decreased PU.1 results in mature B-cell lymphoma development.</p>\",\"PeriodicalId\":48943,\"journal\":{\"name\":\"Cancer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/cas.16344\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cas.16344","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
摘要
弥漫大 B 细胞淋巴瘤(DLBCL)是淋巴瘤中最常见的亚型,占非霍奇金淋巴瘤的 30%。虽然对基因异常的全面分析已促成了淋巴瘤的分类,但淋巴瘤发生的确切机制仍难以确定。Spi1编码的Ets家族转录因子PU.1对髓系细胞和淋巴细胞的发育至关重要。我们之前的研究表明,PU.1 在经典霍奇金淋巴瘤和骨髓瘤细胞中具有肿瘤抑制功能。在目前的研究中,我们发现DLBCL患者的淋巴瘤细胞中PU.1的表达明显减少,尤其是在非生殖中心B细胞样(GCB)亚型中。这一观察结果表明,PU.1 的下调可能与 DLBCL 肿瘤的生长有关。为了进一步评估PU.1在体内成熟B细胞中的作用,我们利用Cγ1-Cre小鼠产生了条件性Spi1基因敲除小鼠。值得注意的是,23 只基因敲除小鼠中有 13 只(56%)出现脾脏肿大、淋巴结病变或肿块,其中一些经组织学证实患有 B 细胞淋巴瘤。相比之下,野生型小鼠没有出现 B 细胞淋巴瘤。此外,对来自 Cγ1-Cre Spi1F/F 小鼠的淋巴瘤细胞进行的 RNA-seq 分析显示,每个单克隆 CDR3 序列的频率都很高,表明这些淋巴瘤细胞是单克隆肿瘤细胞。将这些 B 淋巴瘤细胞移植到免疫缺陷受体小鼠体内,所有小鼠均在 3 周内死亡。慢病毒转导的 Spi1 挽救了 60% 的受体小鼠,表明 PU.1 在体内具有肿瘤抑制功能。综上所述,PU.1是成熟B细胞的肿瘤抑制因子,PU.1的减少会导致成熟B细胞淋巴瘤的发生。
Decreased PU.1 expression in mature B cells induces lymphomagenesis.
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma, accounting for 30% of non-Hodgkin lymphomas. Although comprehensive analysis of genetic abnormalities has led to the classification of lymphomas, the exact mechanism of lymphomagenesis remains elusive. The Ets family transcription factor, PU.1, encoded by Spi1, is essential for the development of myeloid and lymphoid cells. Our previous research illustrated the tumor suppressor function of PU.1 in classical Hodgkin lymphoma and myeloma cells. In the current study, we found that patients with DLBCL exhibited notably reduced PU.1 expression in their lymphoma cells, particularly in the non-germinal center B-cell-like (GCB) subtype. This observation suggests that downregulation of PU.1 may be implicated in DLBCL tumor growth. To further assess PU.1's role in mature B cells in vivo, we generated conditional Spi1 knockout mice using Cγ1-Cre mice. Remarkably, 13 of the 23 knockout mice (56%) showed splenomegaly, lymphadenopathy, or masses, with some having histologically confirmed B-cell lymphomas. In contrast, no wild-type mice developed B-cell lymphoma. In addition, RNA-seq analysis of lymphoma cells from Cγ1-Cre Spi1F/F mice showed high frequency of each monoclonal CDR3 sequence, indicating that these lymphoma cells were monoclonal tumor cells. When these B lymphoma cells were transplanted into immunodeficient recipient mice, all mice died within 3 weeks. Lentiviral-transduced Spi1 rescued 60% of the recipient mice, suggesting that PU.1 has a tumor suppressor function in vivo. Collectively, PU.1 is a tumor suppressor in mature B cells, and decreased PU.1 results in mature B-cell lymphoma development.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.