Luca Carenzo, Lorenzo Gamberini, Federico Crimaldi, Davide Colombo, Pier Luigi Ingrassia, Luca Ragazzoni, Francesco Della Corte, Marta Caviglia
{"title":"模拟大规模伤亡事件中影响院前分诊应用准确性和院前现场时间的因素。","authors":"Luca Carenzo, Lorenzo Gamberini, Federico Crimaldi, Davide Colombo, Pier Luigi Ingrassia, Luca Ragazzoni, Francesco Della Corte, Marta Caviglia","doi":"10.1186/s13049-024-01257-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The contemporary management of mass casualty incidents (MCIs) relies on the effective application of predetermined, dedicated response plans based on current best evidence. Currently, there is limited evidence regarding the factors influencing the accuracy of first responders (FRs) in applying the START protocol and the associated prehospital times during the response to MCIs. The objective of this study was to investigate factors affecting FRs' accuracy in performing prehospital triage in a series of simulated mass casualty exercises. Secondly, we assessed factors affecting triage-to-scene exit time in the same series of exercises.</p><p><strong>Methods: </strong>This retrospective study focused on simulated casualties in a series of simulated MCIs Full Scale Exercises. START triage was the triage method of choice. For each Full-Scale Exercise (FSEx), collected data included exercise and casualty-related information, simulated casualty vital parameters, simulated casualty anatomic lesions, scenario management times, and responder experience.</p><p><strong>Results: </strong>Among the 1090 casualties included in the primary analysis, 912 (83.6%) were correctly triaged, 137 (12.6%) were overtriaged, and 41 (3.7%) were undertriaged. The multinomial regression model indicated that increasing heart rate (RRR = 1.012, p = 0.008), H-AIS (RRR = 1.532, p < 0.001), and thorax AIS (T-AIS) (RRR = 1.344, p = 0.007), and lower ISS (RRR = 0.957, p = 0.042) were independently associated with overtriage. Undertriage was significantly associated with increasing systolic blood pressure (RRR = 1.013, p = 0.005), AVPU class (RRR = 3.104 per class increase), and A-AIS (RRR = 1.290, p = 0.035). The model investigating the factors associated with triage-to-scene departure time showed that the assigned prehospital triage code red (TR = 0.841, p = 0.002), expert providers (TR = 0.909, p = 0.015), and higher peripheral oxygen saturation (TR = 0.998, p < 0.001) were associated with a reduction in triage-to-scene departure time. Conversely, increasing ISS was associated with a longer triage-to-scene departure time (TR = 1.004, 0.017).</p><p><strong>Conclusions: </strong>Understanding the predictors influencing triage and scene management decision-making by healthcare professionals responding to a mass casualty may facilitate the development of tailored training pathways regarding mass casualty triage and scene management.</p>","PeriodicalId":49292,"journal":{"name":"Scandinavian Journal of Trauma Resuscitation & Emergency Medicine","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426006/pdf/","citationCount":"0","resultStr":"{\"title\":\"Factors affecting the accuracy of prehospital triage application and prehospital scene time in simulated mass casualty incidents.\",\"authors\":\"Luca Carenzo, Lorenzo Gamberini, Federico Crimaldi, Davide Colombo, Pier Luigi Ingrassia, Luca Ragazzoni, Francesco Della Corte, Marta Caviglia\",\"doi\":\"10.1186/s13049-024-01257-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The contemporary management of mass casualty incidents (MCIs) relies on the effective application of predetermined, dedicated response plans based on current best evidence. Currently, there is limited evidence regarding the factors influencing the accuracy of first responders (FRs) in applying the START protocol and the associated prehospital times during the response to MCIs. The objective of this study was to investigate factors affecting FRs' accuracy in performing prehospital triage in a series of simulated mass casualty exercises. Secondly, we assessed factors affecting triage-to-scene exit time in the same series of exercises.</p><p><strong>Methods: </strong>This retrospective study focused on simulated casualties in a series of simulated MCIs Full Scale Exercises. START triage was the triage method of choice. For each Full-Scale Exercise (FSEx), collected data included exercise and casualty-related information, simulated casualty vital parameters, simulated casualty anatomic lesions, scenario management times, and responder experience.</p><p><strong>Results: </strong>Among the 1090 casualties included in the primary analysis, 912 (83.6%) were correctly triaged, 137 (12.6%) were overtriaged, and 41 (3.7%) were undertriaged. The multinomial regression model indicated that increasing heart rate (RRR = 1.012, p = 0.008), H-AIS (RRR = 1.532, p < 0.001), and thorax AIS (T-AIS) (RRR = 1.344, p = 0.007), and lower ISS (RRR = 0.957, p = 0.042) were independently associated with overtriage. Undertriage was significantly associated with increasing systolic blood pressure (RRR = 1.013, p = 0.005), AVPU class (RRR = 3.104 per class increase), and A-AIS (RRR = 1.290, p = 0.035). The model investigating the factors associated with triage-to-scene departure time showed that the assigned prehospital triage code red (TR = 0.841, p = 0.002), expert providers (TR = 0.909, p = 0.015), and higher peripheral oxygen saturation (TR = 0.998, p < 0.001) were associated with a reduction in triage-to-scene departure time. Conversely, increasing ISS was associated with a longer triage-to-scene departure time (TR = 1.004, 0.017).</p><p><strong>Conclusions: </strong>Understanding the predictors influencing triage and scene management decision-making by healthcare professionals responding to a mass casualty may facilitate the development of tailored training pathways regarding mass casualty triage and scene management.</p>\",\"PeriodicalId\":49292,\"journal\":{\"name\":\"Scandinavian Journal of Trauma Resuscitation & Emergency Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426006/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Trauma Resuscitation & Emergency Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13049-024-01257-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EMERGENCY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Trauma Resuscitation & Emergency Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13049-024-01257-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EMERGENCY MEDICINE","Score":null,"Total":0}
Factors affecting the accuracy of prehospital triage application and prehospital scene time in simulated mass casualty incidents.
Background: The contemporary management of mass casualty incidents (MCIs) relies on the effective application of predetermined, dedicated response plans based on current best evidence. Currently, there is limited evidence regarding the factors influencing the accuracy of first responders (FRs) in applying the START protocol and the associated prehospital times during the response to MCIs. The objective of this study was to investigate factors affecting FRs' accuracy in performing prehospital triage in a series of simulated mass casualty exercises. Secondly, we assessed factors affecting triage-to-scene exit time in the same series of exercises.
Methods: This retrospective study focused on simulated casualties in a series of simulated MCIs Full Scale Exercises. START triage was the triage method of choice. For each Full-Scale Exercise (FSEx), collected data included exercise and casualty-related information, simulated casualty vital parameters, simulated casualty anatomic lesions, scenario management times, and responder experience.
Results: Among the 1090 casualties included in the primary analysis, 912 (83.6%) were correctly triaged, 137 (12.6%) were overtriaged, and 41 (3.7%) were undertriaged. The multinomial regression model indicated that increasing heart rate (RRR = 1.012, p = 0.008), H-AIS (RRR = 1.532, p < 0.001), and thorax AIS (T-AIS) (RRR = 1.344, p = 0.007), and lower ISS (RRR = 0.957, p = 0.042) were independently associated with overtriage. Undertriage was significantly associated with increasing systolic blood pressure (RRR = 1.013, p = 0.005), AVPU class (RRR = 3.104 per class increase), and A-AIS (RRR = 1.290, p = 0.035). The model investigating the factors associated with triage-to-scene departure time showed that the assigned prehospital triage code red (TR = 0.841, p = 0.002), expert providers (TR = 0.909, p = 0.015), and higher peripheral oxygen saturation (TR = 0.998, p < 0.001) were associated with a reduction in triage-to-scene departure time. Conversely, increasing ISS was associated with a longer triage-to-scene departure time (TR = 1.004, 0.017).
Conclusions: Understanding the predictors influencing triage and scene management decision-making by healthcare professionals responding to a mass casualty may facilitate the development of tailored training pathways regarding mass casualty triage and scene management.
期刊介绍:
The primary topics of interest in Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine (SJTREM) are the pre-hospital and early in-hospital diagnostic and therapeutic aspects of emergency medicine, trauma, and resuscitation. Contributions focusing on dispatch, major incidents, etiology, pathophysiology, rehabilitation, epidemiology, prevention, education, training, implementation, work environment, as well as ethical and socio-economic aspects may also be assessed for publication.