FGF4 和抗坏血酸通过激活 JAK2-STAT3 信号,促进诱导心肌细胞的成熟。

IF 9.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Experimental and Molecular Medicine Pub Date : 2024-10-01 DOI:10.1038/s12276-024-01321-z
Seongmin Jun, Myeong-Hwa Song, Seung-Cheol Choi, Ji-Min Noh, Kyung Seob Kim, Jae Hyoung Park, Da Eun Yoon, Kyoungmi Kim, Minseok Kim, Sun Wook Hwang, Do-Sun Lim
{"title":"FGF4 和抗坏血酸通过激活 JAK2-STAT3 信号,促进诱导心肌细胞的成熟。","authors":"Seongmin Jun, Myeong-Hwa Song, Seung-Cheol Choi, Ji-Min Noh, Kyung Seob Kim, Jae Hyoung Park, Da Eun Yoon, Kyoungmi Kim, Minseok Kim, Sun Wook Hwang, Do-Sun Lim","doi":"10.1038/s12276-024-01321-z","DOIUrl":null,"url":null,"abstract":"Direct cardiac reprogramming represents a novel therapeutic strategy to convert non-cardiac cells such as fibroblasts into cardiomyocytes (CMs). This process involves essential transcription factors, such as Mef2c, Gata4, Tbx5 (MGT), MESP1, and MYOCD (MGTMM). However, the small molecules responsible for inducing immature induced CMs (iCMs) and the signaling mechanisms driving their maturation remain elusive. Our study explored the effects of various small molecules on iCM induction and discovered that the combination of FGF4 and ascorbic acid (FA) enhances CM markers, exhibits organized sarcomere and T-tubule structures, and improves cardiac function. Transcriptome analysis emphasized the importance of ECM-integrin-focal adhesions and the upregulation of the JAK2–STAT3 and TGFB signaling pathways in FA-treated iCMs. Notably, JAK2–STAT3 knockdown affected TGFB signaling and the ECM and downregulated mature CM markers in FA-treated iCMs. Our findings underscore the critical role of the JAK2–STAT3 signaling pathway in activating TGFB signaling and ECM synthesis in directly reprogrammed CMs. Cardiovascular diseases are a major global cause of death, often due to the loss of cardiomyocytes and increased heart scarring. Existing treatments, like medication and heart transplants, have limitations, emphasizing the need for new cell regeneration therapies. This study investigates direct cardiac reprogramming—a new method to regenerate heart muscle cells by transforming fibroblasts into induced cardiomyocytes using specific factors and small molecules. The team tested various small molecules and found that a mix of FGF4 and ascorbic acid significantly improves the maturation of iCMs. They used techniques like immunofluorescence staining, flow cytometry, and electrophysiological analysis to evaluate the conversion and maturation of iCMs. This study shows that direct cardiac reprogramming can be enhanced with the right combination of small molecules, providing a promising strategy for heart regeneration. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 10","pages":"2231-2245"},"PeriodicalIF":9.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s12276-024-01321-z.pdf","citationCount":"0","resultStr":"{\"title\":\"FGF4 and ascorbic acid enhance the maturation of induced cardiomyocytes by activating JAK2–STAT3 signaling\",\"authors\":\"Seongmin Jun, Myeong-Hwa Song, Seung-Cheol Choi, Ji-Min Noh, Kyung Seob Kim, Jae Hyoung Park, Da Eun Yoon, Kyoungmi Kim, Minseok Kim, Sun Wook Hwang, Do-Sun Lim\",\"doi\":\"10.1038/s12276-024-01321-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct cardiac reprogramming represents a novel therapeutic strategy to convert non-cardiac cells such as fibroblasts into cardiomyocytes (CMs). This process involves essential transcription factors, such as Mef2c, Gata4, Tbx5 (MGT), MESP1, and MYOCD (MGTMM). However, the small molecules responsible for inducing immature induced CMs (iCMs) and the signaling mechanisms driving their maturation remain elusive. Our study explored the effects of various small molecules on iCM induction and discovered that the combination of FGF4 and ascorbic acid (FA) enhances CM markers, exhibits organized sarcomere and T-tubule structures, and improves cardiac function. Transcriptome analysis emphasized the importance of ECM-integrin-focal adhesions and the upregulation of the JAK2–STAT3 and TGFB signaling pathways in FA-treated iCMs. Notably, JAK2–STAT3 knockdown affected TGFB signaling and the ECM and downregulated mature CM markers in FA-treated iCMs. Our findings underscore the critical role of the JAK2–STAT3 signaling pathway in activating TGFB signaling and ECM synthesis in directly reprogrammed CMs. Cardiovascular diseases are a major global cause of death, often due to the loss of cardiomyocytes and increased heart scarring. Existing treatments, like medication and heart transplants, have limitations, emphasizing the need for new cell regeneration therapies. This study investigates direct cardiac reprogramming—a new method to regenerate heart muscle cells by transforming fibroblasts into induced cardiomyocytes using specific factors and small molecules. The team tested various small molecules and found that a mix of FGF4 and ascorbic acid significantly improves the maturation of iCMs. They used techniques like immunofluorescence staining, flow cytometry, and electrophysiological analysis to evaluate the conversion and maturation of iCMs. This study shows that direct cardiac reprogramming can be enhanced with the right combination of small molecules, providing a promising strategy for heart regeneration. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.\",\"PeriodicalId\":50466,\"journal\":{\"name\":\"Experimental and Molecular Medicine\",\"volume\":\"56 10\",\"pages\":\"2231-2245\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s12276-024-01321-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental and Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s12276-024-01321-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s12276-024-01321-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

直接心脏重编程是将成纤维细胞等非心脏细胞转化为心肌细胞(CM)的一种新型治疗策略。这一过程涉及重要的转录因子,如 Mef2c、Gata4、Tbx5 (MGT)、MESP1 和 MYOCD (MGTMM)。然而,负责诱导未成熟诱导型 CMs(iCMs)的小分子和驱动其成熟的信号机制仍未确定。我们的研究探索了各种小分子对 iCM 诱导的影响,发现 FGF4 和抗坏血酸(FA)的组合能增强 CM 标记,显示有组织的肌节和 T 管结构,并改善心脏功能。转录组分析强调了ECM-整合素-局灶粘附的重要性,以及JAK2-STAT3和TGFB信号通路在FA处理的iCM中的上调。值得注意的是,敲除 JAK2-STAT3 会影响 TGFB 信号传导和 ECM,并下调 FA 处理的 iCM 中的成熟 CM 标记。我们的发现强调了 JAK2-STAT3 信号通路在激活直接重编程 CM 的 TGFB 信号和 ECM 合成中的关键作用。示意图显示 FA 可增强心脏直接重编程和心肌细胞成熟所依赖的 JAK-STAT3 信号通路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FGF4 and ascorbic acid enhance the maturation of induced cardiomyocytes by activating JAK2–STAT3 signaling
Direct cardiac reprogramming represents a novel therapeutic strategy to convert non-cardiac cells such as fibroblasts into cardiomyocytes (CMs). This process involves essential transcription factors, such as Mef2c, Gata4, Tbx5 (MGT), MESP1, and MYOCD (MGTMM). However, the small molecules responsible for inducing immature induced CMs (iCMs) and the signaling mechanisms driving their maturation remain elusive. Our study explored the effects of various small molecules on iCM induction and discovered that the combination of FGF4 and ascorbic acid (FA) enhances CM markers, exhibits organized sarcomere and T-tubule structures, and improves cardiac function. Transcriptome analysis emphasized the importance of ECM-integrin-focal adhesions and the upregulation of the JAK2–STAT3 and TGFB signaling pathways in FA-treated iCMs. Notably, JAK2–STAT3 knockdown affected TGFB signaling and the ECM and downregulated mature CM markers in FA-treated iCMs. Our findings underscore the critical role of the JAK2–STAT3 signaling pathway in activating TGFB signaling and ECM synthesis in directly reprogrammed CMs. Cardiovascular diseases are a major global cause of death, often due to the loss of cardiomyocytes and increased heart scarring. Existing treatments, like medication and heart transplants, have limitations, emphasizing the need for new cell regeneration therapies. This study investigates direct cardiac reprogramming—a new method to regenerate heart muscle cells by transforming fibroblasts into induced cardiomyocytes using specific factors and small molecules. The team tested various small molecules and found that a mix of FGF4 and ascorbic acid significantly improves the maturation of iCMs. They used techniques like immunofluorescence staining, flow cytometry, and electrophysiological analysis to evaluate the conversion and maturation of iCMs. This study shows that direct cardiac reprogramming can be enhanced with the right combination of small molecules, providing a promising strategy for heart regeneration. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental and Molecular Medicine
Experimental and Molecular Medicine 医学-生化与分子生物学
CiteScore
19.50
自引率
0.80%
发文量
166
审稿时长
3 months
期刊介绍: Experimental & Molecular Medicine (EMM) stands as Korea's pioneering biochemistry journal, established in 1964 and rejuvenated in 1996 as an Open Access, fully peer-reviewed international journal. Dedicated to advancing translational research and showcasing recent breakthroughs in the biomedical realm, EMM invites submissions encompassing genetic, molecular, and cellular studies of human physiology and diseases. Emphasizing the correlation between experimental and translational research and enhanced clinical benefits, the journal actively encourages contributions employing specific molecular tools. Welcoming studies that bridge basic discoveries with clinical relevance, alongside articles demonstrating clear in vivo significance and novelty, Experimental & Molecular Medicine proudly serves as an open-access, online-only repository of cutting-edge medical research.
期刊最新文献
Influencing immunity: role of extracellular vesicles in tumor immune checkpoint dynamics. Sorcin can trigger pancreatic cancer-associated new-onset diabetes through the secretion of inflammatory cytokines such as serpin E1 and CCL5. Lactate utilization in Lace1 knockout mice promotes browning of inguinal white adipose tissue. SUMOylation of TP53INP1 is involved in miR-30a-5p-regulated heart senescence. The muscle-intervertebral disc interaction mediated by L-BAIBA modulates extracellular matrix homeostasis and PANoptosis in nucleus pulposus cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1