基于低温电子显微镜和呼吸复合体 I 分子动力学模拟的氨基酸电荷状态评估。

IF 3.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et Biophysica Acta-Bioenergetics Pub Date : 2024-09-24 DOI:10.1016/j.bbabio.2024.149512
Jonathan Lasham , Amina Djurabekova , Georgios Kolypetris , Volker Zickermann , Janet Vonck , Vivek Sharma
{"title":"基于低温电子显微镜和呼吸复合体 I 分子动力学模拟的氨基酸电荷状态评估。","authors":"Jonathan Lasham ,&nbsp;Amina Djurabekova ,&nbsp;Georgios Kolypetris ,&nbsp;Volker Zickermann ,&nbsp;Janet Vonck ,&nbsp;Vivek Sharma","doi":"10.1016/j.bbabio.2024.149512","DOIUrl":null,"url":null,"abstract":"<div><div>The charge states of titratable amino acid residues play a key role in the function of membrane-bound bioenergetic proteins. However, determination of these charge states both through experimental and computational approaches is extremely challenging. Cryo-EM density maps can provide insights on the charge states of titratable amino acid residues. By performing classical atomistic molecular dynamics simulations on the high resolution cryo-EM structures of respiratory complex I from <em>Yarrowia lipolytica</em>, we analyze the conformational and charge states of a key acidic residue in its ND1 subunit, aspartic acid D203, which is also a mitochondrial disease mutation locus. We suggest that in the native state of respiratory complex I, D203 is negatively charged and maintains a stable hydrogen bond to a conserved arginine residue. Alternatively, upon conformational change in the turnover state of the enzyme, its sidechain attains a charge-neutral status. We discuss the implications of this analysis on the molecular mechanism of respiratory complex I.</div></div>","PeriodicalId":50731,"journal":{"name":"Biochimica et Biophysica Acta-Bioenergetics","volume":"1866 1","pages":"Article 149512"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of amino acid charge states based on cryo-electron microscopy and molecular dynamics simulations of respiratory complex I\",\"authors\":\"Jonathan Lasham ,&nbsp;Amina Djurabekova ,&nbsp;Georgios Kolypetris ,&nbsp;Volker Zickermann ,&nbsp;Janet Vonck ,&nbsp;Vivek Sharma\",\"doi\":\"10.1016/j.bbabio.2024.149512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The charge states of titratable amino acid residues play a key role in the function of membrane-bound bioenergetic proteins. However, determination of these charge states both through experimental and computational approaches is extremely challenging. Cryo-EM density maps can provide insights on the charge states of titratable amino acid residues. By performing classical atomistic molecular dynamics simulations on the high resolution cryo-EM structures of respiratory complex I from <em>Yarrowia lipolytica</em>, we analyze the conformational and charge states of a key acidic residue in its ND1 subunit, aspartic acid D203, which is also a mitochondrial disease mutation locus. We suggest that in the native state of respiratory complex I, D203 is negatively charged and maintains a stable hydrogen bond to a conserved arginine residue. Alternatively, upon conformational change in the turnover state of the enzyme, its sidechain attains a charge-neutral status. We discuss the implications of this analysis on the molecular mechanism of respiratory complex I.</div></div>\",\"PeriodicalId\":50731,\"journal\":{\"name\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"volume\":\"1866 1\",\"pages\":\"Article 149512\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005272824004821\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Bioenergetics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005272824004821","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

可滴定氨基酸残基的电荷状态对膜结合生物能蛋白质的功能起着关键作用。然而,通过实验和计算方法确定这些电荷状态极具挑战性。低温电子显微镜密度图可以让人们深入了解可滴定氨基酸残基的电荷状态。通过对来自脂溶性亚罗维氏菌(Yarrowia lipolytica)的呼吸复合体 I 的高分辨率低温电子显微镜结构进行经典原子分子动力学模拟,我们分析了其 ND1 亚基中一个关键酸性残基(天冬氨酸 D203)的构象和电荷状态,该残基也是线粒体疾病的突变位点。我们认为,在呼吸复合体 I 的原生状态下,D203 带有负电荷,并与一个保守的精氨酸残基保持稳定的氢键。或者,在酶的转换状态发生构象变化时,其侧链会达到电荷中性状态。我们讨论了这一分析对呼吸复合体 I 分子机制的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of amino acid charge states based on cryo-electron microscopy and molecular dynamics simulations of respiratory complex I
The charge states of titratable amino acid residues play a key role in the function of membrane-bound bioenergetic proteins. However, determination of these charge states both through experimental and computational approaches is extremely challenging. Cryo-EM density maps can provide insights on the charge states of titratable amino acid residues. By performing classical atomistic molecular dynamics simulations on the high resolution cryo-EM structures of respiratory complex I from Yarrowia lipolytica, we analyze the conformational and charge states of a key acidic residue in its ND1 subunit, aspartic acid D203, which is also a mitochondrial disease mutation locus. We suggest that in the native state of respiratory complex I, D203 is negatively charged and maintains a stable hydrogen bond to a conserved arginine residue. Alternatively, upon conformational change in the turnover state of the enzyme, its sidechain attains a charge-neutral status. We discuss the implications of this analysis on the molecular mechanism of respiratory complex I.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochimica et Biophysica Acta-Bioenergetics
Biochimica et Biophysica Acta-Bioenergetics 生物-生化与分子生物学
CiteScore
9.50
自引率
7.00%
发文量
363
审稿时长
92 days
期刊介绍: BBA Bioenergetics covers the area of biological membranes involved in energy transfer and conversion. In particular, it focuses on the structures obtained by X-ray crystallography and other approaches, and molecular mechanisms of the components of photosynthesis, mitochondrial and bacterial respiration, oxidative phosphorylation, motility and transport. It spans applications of structural biology, molecular modeling, spectroscopy and biophysics in these systems, through bioenergetic aspects of mitochondrial biology including biomedicine aspects of energy metabolism in mitochondrial disorders, neurodegenerative diseases like Parkinson''s and Alzheimer''s, aging, diabetes and even cancer.
期刊最新文献
Clinical ischemia-reperfusion injury: Driven by reductive rather than oxidative stress? A narrative review. Commentary: Why do many cell biology papers contain fundamental bioenergetic errors? Purification and characterization of recombinant human mitochondrial proton-pumping nicotinamide nucleotide transhydrogenase. Mutational interference with oligomerization properties of OCP-related apo- and holoproteins studied by analytical ultracentrifugation. ADP-inhibited structure of non-catalytic site-depleted FoF1-ATPase from thermophilic Bacillus sp. PS-3.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1