利用多参数磁共振成像预测胶质瘤病理的深度学习和生境放射组学:一项多中心研究。

IF 3.8 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Academic Radiology Pub Date : 2024-09-24 DOI:10.1016/j.acra.2024.09.021
Yunyang Zhu, Jing Wang, Chen Xue, Xiaoyang Zhai, Chaoyong Xiao, Ting Lu
{"title":"利用多参数磁共振成像预测胶质瘤病理的深度学习和生境放射组学:一项多中心研究。","authors":"Yunyang Zhu, Jing Wang, Chen Xue, Xiaoyang Zhai, Chaoyong Xiao, Ting Lu","doi":"10.1016/j.acra.2024.09.021","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>Recent radiomics studies on predicting pathological outcomes of glioma have shown immense potential. However, the predictive ability remains suboptimal due to the tumor intrinsic heterogeneity. We aimed to achieve better pathological prediction outcomes by combining habitat analysis with deep learning.</p><p><strong>Materials and methods: </strong>387 cases of primary glioma from three hospitals were collected, along with their T1 contrast-enhanced and T2-weighted MR sequences, pathological reports and clinical histories. The training set consisted of 264 patients, 82 patients composed the test set, and 41 patients were used as the validation set for hyperparameter tuning and optimal model selection. All groups were sourced from different centers. Through radiomics, deep learning, habitat analysis and combined analysis, we extracted imaging features separately and jointly modeled them with clinical features. We identified the optimal models for predicting glioma grades, Ki67 expression levels, P53 mutation and IDH1 mutation.</p><p><strong>Results: </strong>Using a LightGBM model with DenseNet161 features based on habitat subregions, the best tumor grade prediction model was achieved. A LightGBM model with ResNet50 features based on habitat subregions yielded the best Ki67 expression level prediction model. An SVM model with Radiomics and Inception_v3 features provided the best prediction of P53 mutation. The best model for predicting IDH1 mutation was achieved by an MLP model with Radiomics features based on habitat subregions. Clinical features might be potentially helpful for the prediction with relatively weak evidence.</p><p><strong>Conclusion: </strong>Habitat+Deep Learning feature extraction methods were optimal for predicting grades and Ki67 levels. Deep Learning is optimal for predicting P53 mutation, while the combination of Habitat+ Radiomics models yielded the best prediction for IDH1 mutation.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning and Habitat Radiomics for the Prediction of Glioma Pathology Using Multiparametric MRI: A Multicenter Study.\",\"authors\":\"Yunyang Zhu, Jing Wang, Chen Xue, Xiaoyang Zhai, Chaoyong Xiao, Ting Lu\",\"doi\":\"10.1016/j.acra.2024.09.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Rationale and objectives: </strong>Recent radiomics studies on predicting pathological outcomes of glioma have shown immense potential. However, the predictive ability remains suboptimal due to the tumor intrinsic heterogeneity. We aimed to achieve better pathological prediction outcomes by combining habitat analysis with deep learning.</p><p><strong>Materials and methods: </strong>387 cases of primary glioma from three hospitals were collected, along with their T1 contrast-enhanced and T2-weighted MR sequences, pathological reports and clinical histories. The training set consisted of 264 patients, 82 patients composed the test set, and 41 patients were used as the validation set for hyperparameter tuning and optimal model selection. All groups were sourced from different centers. Through radiomics, deep learning, habitat analysis and combined analysis, we extracted imaging features separately and jointly modeled them with clinical features. We identified the optimal models for predicting glioma grades, Ki67 expression levels, P53 mutation and IDH1 mutation.</p><p><strong>Results: </strong>Using a LightGBM model with DenseNet161 features based on habitat subregions, the best tumor grade prediction model was achieved. A LightGBM model with ResNet50 features based on habitat subregions yielded the best Ki67 expression level prediction model. An SVM model with Radiomics and Inception_v3 features provided the best prediction of P53 mutation. The best model for predicting IDH1 mutation was achieved by an MLP model with Radiomics features based on habitat subregions. Clinical features might be potentially helpful for the prediction with relatively weak evidence.</p><p><strong>Conclusion: </strong>Habitat+Deep Learning feature extraction methods were optimal for predicting grades and Ki67 levels. Deep Learning is optimal for predicting P53 mutation, while the combination of Habitat+ Radiomics models yielded the best prediction for IDH1 mutation.</p>\",\"PeriodicalId\":50928,\"journal\":{\"name\":\"Academic Radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.acra.2024.09.021\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.09.021","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

理由和目标:最近关于预测胶质瘤病理结果的放射组学研究显示了巨大的潜力。然而,由于肿瘤内在的异质性,其预测能力仍未达到最佳水平。材料与方法:我们收集了三家医院的 387 例原发性胶质瘤病例及其 T1 对比增强和 T2 加权磁共振序列、病理报告和临床病史。训练集由 264 名患者组成,82 名患者组成测试集,41 名患者作为验证集,用于超参数调整和最佳模型选择。所有组均来自不同的中心。通过放射组学、深度学习、生境分析和综合分析,我们分别提取了影像学特征,并将其与临床特征联合建模。我们确定了预测胶质瘤分级、Ki67表达水平、P53突变和IDH1突变的最佳模型:结果:使用基于生境亚区域特征的带有 DenseNet161 特征的 LightGBM 模型,获得了最佳肿瘤分级预测模型。基于生境亚区的带有 ResNet50 特征的 LightGBM 模型产生了最佳的 Ki67 表达水平预测模型。带有 Radiomics 和 Inception_v3 特征的 SVM 模型提供了最佳的 P53 突变预测。预测 IDH1 突变的最佳模型是基于栖息地亚区的带有 Radiomics 特征的 MLP 模型。临床特征可能对证据相对较弱的预测有潜在帮助:栖息地+深度学习特征提取方法是预测等级和 Ki67 水平的最佳方法。深度学习是预测 P53 突变的最佳方法,而 Habitat+ Radiomics 模型的组合对 IDH1 突变的预测效果最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning and Habitat Radiomics for the Prediction of Glioma Pathology Using Multiparametric MRI: A Multicenter Study.

Rationale and objectives: Recent radiomics studies on predicting pathological outcomes of glioma have shown immense potential. However, the predictive ability remains suboptimal due to the tumor intrinsic heterogeneity. We aimed to achieve better pathological prediction outcomes by combining habitat analysis with deep learning.

Materials and methods: 387 cases of primary glioma from three hospitals were collected, along with their T1 contrast-enhanced and T2-weighted MR sequences, pathological reports and clinical histories. The training set consisted of 264 patients, 82 patients composed the test set, and 41 patients were used as the validation set for hyperparameter tuning and optimal model selection. All groups were sourced from different centers. Through radiomics, deep learning, habitat analysis and combined analysis, we extracted imaging features separately and jointly modeled them with clinical features. We identified the optimal models for predicting glioma grades, Ki67 expression levels, P53 mutation and IDH1 mutation.

Results: Using a LightGBM model with DenseNet161 features based on habitat subregions, the best tumor grade prediction model was achieved. A LightGBM model with ResNet50 features based on habitat subregions yielded the best Ki67 expression level prediction model. An SVM model with Radiomics and Inception_v3 features provided the best prediction of P53 mutation. The best model for predicting IDH1 mutation was achieved by an MLP model with Radiomics features based on habitat subregions. Clinical features might be potentially helpful for the prediction with relatively weak evidence.

Conclusion: Habitat+Deep Learning feature extraction methods were optimal for predicting grades and Ki67 levels. Deep Learning is optimal for predicting P53 mutation, while the combination of Habitat+ Radiomics models yielded the best prediction for IDH1 mutation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Academic Radiology
Academic Radiology 医学-核医学
CiteScore
7.60
自引率
10.40%
发文量
432
审稿时长
18 days
期刊介绍: Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.
期刊最新文献
Clinical Impact of Radiologist's Alert System on Patient Care for High-risk Incidental CT Findings: A Machine Learning-Based Risk Factor Analysis. Magnetic Resonance Imaging-Based Radiomics of Axial and Sagittal Orientation in Pregnant Patients with Suspected Placenta Accreta Spectrum. Navigating a Radiology Conference: A Comprehensive Guide for Learners. Radiomics Combined with ACR TI-RADS for Thyroid Nodules: Diagnostic Performance, Unnecessary Biopsy Rate, and Nomogram Construction. The association between FLAIR vascular hyperintensities and outcomes in patients with border zone infarcts treated with medical therapy may vary with the infarct subtype.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1