Ur Metser, Andres Kohan, Catherine O'Brien, Rebecca K S Wong, Claudia Ortega, Patrick Veit-Haibach, Brandon Driscoll, Ivan Yeung, Adam Farag
{"title":"18F-氟唑霉素阿拉伯苷(FAZA)PET/MR 作为直肠癌缺氧的生物标记物:试点研究。","authors":"Ur Metser, Andres Kohan, Catherine O'Brien, Rebecca K S Wong, Claudia Ortega, Patrick Veit-Haibach, Brandon Driscoll, Ivan Yeung, Adam Farag","doi":"10.3390/tomography10090102","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor hypoxia is a negative prognostic factor in many tumors and is predictive of metastatic spread and poor responsiveness to both chemotherapy and radiotherapy. <b>Purpose:</b> To assess the feasibility of using <sup>18</sup>F-Fluoroazomycin arabinoside (FAZA) PET/MR to image tumor hypoxia in patients with locally advanced rectal cancer (LARC) prior to and following neoadjuvant chemoradiotherapy (nCRT). The secondary objective was to compare different reference tissues and thresholds for tumor hypoxia quantification. <b>Patients and Methods:</b> Eight patients with histologically proven LARC were included. All patients underwent <sup>18</sup>F-FAZA PET/MR prior to initiation of nCRT, four of whom also had a second scan following completion of nCRT and prior to surgery. Tumors were segmented using T<sub>2</sub>-weighted MR. Each voxel within the segmented tumor was defined as hypoxic or oxic using thresholds derived from various references: ×1.0 or ×1.2 SUVmean of blood pool [BP] or left ventricle [LV] and SUVmean +3SD for gluteus maximus. Correlation coefficient (CoC) between HF and tumor SUVmax/reference SUVmean TRR for the various thresholds was calculated. Hypoxic fraction (HF), defined as the % hypoxic voxels within the tumor volume was calculated for each reference/threshold. <b>Results:</b> For all cases, baseline and follow-up, the CoCs for gluteus maximus and for BP and LV (×1.0) were 0.241, 0.344, and 0.499, respectively, and HFs were (median; range) 16.6% (2.4-33.8), 36.8% (0.3-72.9), and 30.7% (0.8-55.5), respectively. For a threshold of ×1.2, the CoCs for BP and LV as references were 0.611 and 0.838, respectively, and HFs were (median; range) 10.4% (0-47.6), and 4.3% (0-20.1%), respectively. The change in HF following nCRT ranged from (-18.9%) to (+54%). <b>Conclusions:</b> Imaging of hypoxia in LARC with <sup>18</sup>F-FAZA PET/MR is feasible. Blood pool as measured in the LV appears to be the most reliable reference for calculating the HF. There is a wide range of HF and variable change in HF before and after nCRT.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"10 9","pages":"1354-1364"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435673/pdf/","citationCount":"0","resultStr":"{\"title\":\"<sup>18</sup>F-Fluoroazomycin Arabinoside (FAZA) PET/MR as a Biomarker of Hypoxia in Rectal Cancer: A Pilot Study.\",\"authors\":\"Ur Metser, Andres Kohan, Catherine O'Brien, Rebecca K S Wong, Claudia Ortega, Patrick Veit-Haibach, Brandon Driscoll, Ivan Yeung, Adam Farag\",\"doi\":\"10.3390/tomography10090102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumor hypoxia is a negative prognostic factor in many tumors and is predictive of metastatic spread and poor responsiveness to both chemotherapy and radiotherapy. <b>Purpose:</b> To assess the feasibility of using <sup>18</sup>F-Fluoroazomycin arabinoside (FAZA) PET/MR to image tumor hypoxia in patients with locally advanced rectal cancer (LARC) prior to and following neoadjuvant chemoradiotherapy (nCRT). The secondary objective was to compare different reference tissues and thresholds for tumor hypoxia quantification. <b>Patients and Methods:</b> Eight patients with histologically proven LARC were included. All patients underwent <sup>18</sup>F-FAZA PET/MR prior to initiation of nCRT, four of whom also had a second scan following completion of nCRT and prior to surgery. Tumors were segmented using T<sub>2</sub>-weighted MR. Each voxel within the segmented tumor was defined as hypoxic or oxic using thresholds derived from various references: ×1.0 or ×1.2 SUVmean of blood pool [BP] or left ventricle [LV] and SUVmean +3SD for gluteus maximus. Correlation coefficient (CoC) between HF and tumor SUVmax/reference SUVmean TRR for the various thresholds was calculated. Hypoxic fraction (HF), defined as the % hypoxic voxels within the tumor volume was calculated for each reference/threshold. <b>Results:</b> For all cases, baseline and follow-up, the CoCs for gluteus maximus and for BP and LV (×1.0) were 0.241, 0.344, and 0.499, respectively, and HFs were (median; range) 16.6% (2.4-33.8), 36.8% (0.3-72.9), and 30.7% (0.8-55.5), respectively. For a threshold of ×1.2, the CoCs for BP and LV as references were 0.611 and 0.838, respectively, and HFs were (median; range) 10.4% (0-47.6), and 4.3% (0-20.1%), respectively. The change in HF following nCRT ranged from (-18.9%) to (+54%). <b>Conclusions:</b> Imaging of hypoxia in LARC with <sup>18</sup>F-FAZA PET/MR is feasible. Blood pool as measured in the LV appears to be the most reliable reference for calculating the HF. There is a wide range of HF and variable change in HF before and after nCRT.</p>\",\"PeriodicalId\":51330,\"journal\":{\"name\":\"Tomography\",\"volume\":\"10 9\",\"pages\":\"1354-1364\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435673/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tomography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/tomography10090102\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography10090102","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
18F-Fluoroazomycin Arabinoside (FAZA) PET/MR as a Biomarker of Hypoxia in Rectal Cancer: A Pilot Study.
Tumor hypoxia is a negative prognostic factor in many tumors and is predictive of metastatic spread and poor responsiveness to both chemotherapy and radiotherapy. Purpose: To assess the feasibility of using 18F-Fluoroazomycin arabinoside (FAZA) PET/MR to image tumor hypoxia in patients with locally advanced rectal cancer (LARC) prior to and following neoadjuvant chemoradiotherapy (nCRT). The secondary objective was to compare different reference tissues and thresholds for tumor hypoxia quantification. Patients and Methods: Eight patients with histologically proven LARC were included. All patients underwent 18F-FAZA PET/MR prior to initiation of nCRT, four of whom also had a second scan following completion of nCRT and prior to surgery. Tumors were segmented using T2-weighted MR. Each voxel within the segmented tumor was defined as hypoxic or oxic using thresholds derived from various references: ×1.0 or ×1.2 SUVmean of blood pool [BP] or left ventricle [LV] and SUVmean +3SD for gluteus maximus. Correlation coefficient (CoC) between HF and tumor SUVmax/reference SUVmean TRR for the various thresholds was calculated. Hypoxic fraction (HF), defined as the % hypoxic voxels within the tumor volume was calculated for each reference/threshold. Results: For all cases, baseline and follow-up, the CoCs for gluteus maximus and for BP and LV (×1.0) were 0.241, 0.344, and 0.499, respectively, and HFs were (median; range) 16.6% (2.4-33.8), 36.8% (0.3-72.9), and 30.7% (0.8-55.5), respectively. For a threshold of ×1.2, the CoCs for BP and LV as references were 0.611 and 0.838, respectively, and HFs were (median; range) 10.4% (0-47.6), and 4.3% (0-20.1%), respectively. The change in HF following nCRT ranged from (-18.9%) to (+54%). Conclusions: Imaging of hypoxia in LARC with 18F-FAZA PET/MR is feasible. Blood pool as measured in the LV appears to be the most reliable reference for calculating the HF. There is a wide range of HF and variable change in HF before and after nCRT.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.