F13B 通过 HIF-1α/VEGF 通路调节肝细胞癌的血管生成和肿瘤进展。

0 MEDICINE, RESEARCH & EXPERIMENTAL Biomolecules & biomedicine Pub Date : 2024-12-11 DOI:10.17305/bb.2024.10794
Dong Jiang, Zhi Qi, Zhi-Ying Xu, Yi-Ran Li
{"title":"F13B 通过 HIF-1α/VEGF 通路调节肝细胞癌的血管生成和肿瘤进展。","authors":"Dong Jiang, Zhi Qi, Zhi-Ying Xu, Yi-Ran Li","doi":"10.17305/bb.2024.10794","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor with a poor prognosis. This research aimed to investigate the role of F13B in HCC and its underlying mechanisms. Through comprehensive bioinformatics analysis of the GSE120123 and The Cancer Genome Atlas (TCGA)-Liver hepatocellular carcinoma (LIHC) datasets, we identified 220 overlapping prognosis-related genes. Eight key genes, including the previously unreported CCDC170 and F13B in HCC, were identified through Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression analysis. F13B emerged as a significant prognostic factor in HCC, warranting further investigation in subsequent analyses. In vitro experiments showed that F13B expression was notably reduced in HCC cell lines and tissues, particularly in Huh-7 and SMMC-7721 cells. Overexpression of F13B inhibited cell invasion, migration, and proliferation, while its knockdown produced the opposite effect. A lactate dehydrogenase (LDH) activity assay in human umbilical vein endothelial cells (HUVECs) demonstrated that F13B overexpression reduced vascular endothelial growth factor (VEGF)-induced cytotoxicity, whereas knockdown increased it. Further analysis revealed that F13B negatively regulates VEGFA expression, affecting HUVEC proliferation. In HUVECs, F13B overexpression reversed VEGF-induced upregulation of key angiogenesis markers, including phospho-VEGF receptor 2 (p-VEGFR2), matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), as well as AKT/mTOR signaling proteins, phospho-Akt (p-AKT), and phospho-mTOR (p-mTOR). Additionally, F13B negatively regulated VEGFA and hypoxia-inducible factor 1 A (HIF1A) under hypoxic conditions, counteracting the hypoxia-induced increase in cell viability. These findings suggest that F13B regulates angiogenesis through the HIF-1α/VEGF pathway and plays a crucial role in HCC progression. Our results highlight the potential of F13B as a therapeutic target in HCC, providing novel insights into the molecular mechanisms of HCC and its prognostic significance.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":"189-209"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647259/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>F13B</i> regulates angiogenesis and tumor progression in hepatocellular carcinoma via the HIF-1α/VEGF pathway.\",\"authors\":\"Dong Jiang, Zhi Qi, Zhi-Ying Xu, Yi-Ran Li\",\"doi\":\"10.17305/bb.2024.10794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor with a poor prognosis. This research aimed to investigate the role of F13B in HCC and its underlying mechanisms. Through comprehensive bioinformatics analysis of the GSE120123 and The Cancer Genome Atlas (TCGA)-Liver hepatocellular carcinoma (LIHC) datasets, we identified 220 overlapping prognosis-related genes. Eight key genes, including the previously unreported CCDC170 and F13B in HCC, were identified through Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression analysis. F13B emerged as a significant prognostic factor in HCC, warranting further investigation in subsequent analyses. In vitro experiments showed that F13B expression was notably reduced in HCC cell lines and tissues, particularly in Huh-7 and SMMC-7721 cells. Overexpression of F13B inhibited cell invasion, migration, and proliferation, while its knockdown produced the opposite effect. A lactate dehydrogenase (LDH) activity assay in human umbilical vein endothelial cells (HUVECs) demonstrated that F13B overexpression reduced vascular endothelial growth factor (VEGF)-induced cytotoxicity, whereas knockdown increased it. Further analysis revealed that F13B negatively regulates VEGFA expression, affecting HUVEC proliferation. In HUVECs, F13B overexpression reversed VEGF-induced upregulation of key angiogenesis markers, including phospho-VEGF receptor 2 (p-VEGFR2), matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), as well as AKT/mTOR signaling proteins, phospho-Akt (p-AKT), and phospho-mTOR (p-mTOR). Additionally, F13B negatively regulated VEGFA and hypoxia-inducible factor 1 A (HIF1A) under hypoxic conditions, counteracting the hypoxia-induced increase in cell viability. These findings suggest that F13B regulates angiogenesis through the HIF-1α/VEGF pathway and plays a crucial role in HCC progression. Our results highlight the potential of F13B as a therapeutic target in HCC, providing novel insights into the molecular mechanisms of HCC and its prognostic significance.</p>\",\"PeriodicalId\":72398,\"journal\":{\"name\":\"Biomolecules & biomedicine\",\"volume\":\" \",\"pages\":\"189-209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647259/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17305/bb.2024.10794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2024.10794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

肝细胞癌(HCC)是一种侵袭性极强的恶性肿瘤,预后极差。本研究旨在探讨F13B在HCC中的作用及其内在机制。通过对GSE120123和癌症基因组图谱(TCGA)-肝细胞肝癌(LIHC)数据集进行全面的生物信息学分析,我们发现了220个与预后相关的重叠基因。通过最小绝对缩减和选择操作器(LASSO)-Cox回归分析,我们发现了八个关键基因,包括之前未报道过的CCDC170和F13B。F13B是HCC的一个重要预后因素,值得在后续分析中进一步研究。体外实验显示,F13B 在 HCC 细胞系和组织中的表达明显减少,尤其是在 Huh-7 和 SMMC-7721 细胞中。过表达 F13B 会抑制细胞的侵袭、迁移和增殖,而敲除 F13B 则会产生相反的效果。在人脐静脉内皮细胞(HUVECs)中进行的乳酸脱氢酶(LDH)活性测定表明,过表达 F13B 会降低血管内皮生长因子(VEGF)诱导的细胞毒性,而敲除则会增加细胞毒性。进一步的分析表明,F13B 负向调节 VEGFA 的表达,影响 HUVEC 的增殖。在 HUVECs 中,F13B 的过表达逆转了 VEGF 诱导的关键血管生成标志物的上调,包括磷酸化 VEGF 受体 2(p-VEGFR2)、基质金属蛋白酶-2(MMP-2)、基质金属蛋白酶-9(MMP-9)以及 AKT/mTOR 信号蛋白、磷酸化-Akt(p-AKT)和磷酸化-mTOR(p-mTOR)。此外,F13B 还能在缺氧条件下负向调节血管内皮生长因子和缺氧诱导因子 1 A(HIF1A),从而抵消缺氧诱导的细胞活力增加。这些研究结果表明,F13B 通过 HIF-1α/VEGF 通路调控血管生成,并在 HCC 进展中发挥着关键作用。我们的研究结果凸显了 F13B 作为 HCC 治疗靶点的潜力,为 HCC 的分子机制及其预后意义提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
F13B regulates angiogenesis and tumor progression in hepatocellular carcinoma via the HIF-1α/VEGF pathway.

Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor with a poor prognosis. This research aimed to investigate the role of F13B in HCC and its underlying mechanisms. Through comprehensive bioinformatics analysis of the GSE120123 and The Cancer Genome Atlas (TCGA)-Liver hepatocellular carcinoma (LIHC) datasets, we identified 220 overlapping prognosis-related genes. Eight key genes, including the previously unreported CCDC170 and F13B in HCC, were identified through Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression analysis. F13B emerged as a significant prognostic factor in HCC, warranting further investigation in subsequent analyses. In vitro experiments showed that F13B expression was notably reduced in HCC cell lines and tissues, particularly in Huh-7 and SMMC-7721 cells. Overexpression of F13B inhibited cell invasion, migration, and proliferation, while its knockdown produced the opposite effect. A lactate dehydrogenase (LDH) activity assay in human umbilical vein endothelial cells (HUVECs) demonstrated that F13B overexpression reduced vascular endothelial growth factor (VEGF)-induced cytotoxicity, whereas knockdown increased it. Further analysis revealed that F13B negatively regulates VEGFA expression, affecting HUVEC proliferation. In HUVECs, F13B overexpression reversed VEGF-induced upregulation of key angiogenesis markers, including phospho-VEGF receptor 2 (p-VEGFR2), matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), as well as AKT/mTOR signaling proteins, phospho-Akt (p-AKT), and phospho-mTOR (p-mTOR). Additionally, F13B negatively regulated VEGFA and hypoxia-inducible factor 1 A (HIF1A) under hypoxic conditions, counteracting the hypoxia-induced increase in cell viability. These findings suggest that F13B regulates angiogenesis through the HIF-1α/VEGF pathway and plays a crucial role in HCC progression. Our results highlight the potential of F13B as a therapeutic target in HCC, providing novel insights into the molecular mechanisms of HCC and its prognostic significance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Therapeutic effects of chlorogenic acid on allergic rhinitis through TLR4/MAPK/NF-κB pathway modulation. Silencing FOXA1 suppresses inflammation caused by LPS and promotes osteogenic differentiation of periodontal ligament stem cells through the TLR4/MyD88/NF-κB pathway. Systemic immune-inflammation index and the short-term mortality of patients with sepsis: A meta-analysis. hUC-MSC extracellular vesicles protect against hypoxic-ischemic brain injury by promoting NLRP3 ubiquitination. N6-methyladenosine methylation regulators can serve as potential biomarkers for endometriosis related infertility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1