氧气、生命的悖论和眼睛。

IF 3.3 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Frontiers in bioscience (Landmark edition) Pub Date : 2024-09-13 DOI:10.31083/j.fbl2909319
Dario Rusciano, Paola Bagnoli
{"title":"氧气、生命的悖论和眼睛。","authors":"Dario Rusciano, Paola Bagnoli","doi":"10.31083/j.fbl2909319","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress, caused by the formation of free radicals, such as reactive oxygen species (ROS), leads to cell and tissue degradation, contributing to various diseases and aging. While oxygen is essential for aerobic organisms, it inevitably causes oxidative stress. Antioxidants protect against damage from free radicals, and oxidative stress arises when an imbalance occurs between free radical production and antioxidant defenses. However, when investigating whether an excess of antioxidants, almost eliminating oxidative stress, could benefit aging and disease susceptibility, it was observed that a basic level of oxidative stress appears necessary to maintain the correct homeostasis of tissues and organs and life in general. Therefore, this review aimed to compile the most significant and recent papers characterizing and describing the dual role of oxygen as a molecule essential for life and as a precursor of oxidative stress, which can be detrimental to life. We conducted targeted searches in PubMed and Google browsers to gather all relevant papers. We then focused on the eye, an organ particularly vulnerable due to its high metabolic activity combined with direct exposure to light and environmental pollutants, which produces a substantial number of free radicals (mainly ROS). We present a curated selection of relevant literature describing the main ocular pathologies of the posterior and anterior segments of the eye, highlighting oxidative stress as a significant contributing factor. Additionally, we report how endogenous and exogenous antioxidants can mitigate the development and progression of these diseases. Finally, we consider a frequently overlooked aspect: the balance between oxidants and antioxidants in maintaining the homeostatic equilibrium of tissues and organs. It is widely recognized that when oxidants overwhelm antioxidants, oxidative stress occurs, leading to negative consequences for the organism's homeostasis. However, we emphasize that a similarly dangerous situation can arise when the presence of antioxidants overwhelms the production of free radicals, drastically reducing their amount and adversely affecting aging and longevity. Unfortunately, no specific studies have addressed this particular situation in the eye.</p>","PeriodicalId":73069,"journal":{"name":"Frontiers in bioscience (Landmark edition)","volume":"29 9","pages":"319"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen, the Paradox of Life and the Eye.\",\"authors\":\"Dario Rusciano, Paola Bagnoli\",\"doi\":\"10.31083/j.fbl2909319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxidative stress, caused by the formation of free radicals, such as reactive oxygen species (ROS), leads to cell and tissue degradation, contributing to various diseases and aging. While oxygen is essential for aerobic organisms, it inevitably causes oxidative stress. Antioxidants protect against damage from free radicals, and oxidative stress arises when an imbalance occurs between free radical production and antioxidant defenses. However, when investigating whether an excess of antioxidants, almost eliminating oxidative stress, could benefit aging and disease susceptibility, it was observed that a basic level of oxidative stress appears necessary to maintain the correct homeostasis of tissues and organs and life in general. Therefore, this review aimed to compile the most significant and recent papers characterizing and describing the dual role of oxygen as a molecule essential for life and as a precursor of oxidative stress, which can be detrimental to life. We conducted targeted searches in PubMed and Google browsers to gather all relevant papers. We then focused on the eye, an organ particularly vulnerable due to its high metabolic activity combined with direct exposure to light and environmental pollutants, which produces a substantial number of free radicals (mainly ROS). We present a curated selection of relevant literature describing the main ocular pathologies of the posterior and anterior segments of the eye, highlighting oxidative stress as a significant contributing factor. Additionally, we report how endogenous and exogenous antioxidants can mitigate the development and progression of these diseases. Finally, we consider a frequently overlooked aspect: the balance between oxidants and antioxidants in maintaining the homeostatic equilibrium of tissues and organs. It is widely recognized that when oxidants overwhelm antioxidants, oxidative stress occurs, leading to negative consequences for the organism's homeostasis. However, we emphasize that a similarly dangerous situation can arise when the presence of antioxidants overwhelms the production of free radicals, drastically reducing their amount and adversely affecting aging and longevity. Unfortunately, no specific studies have addressed this particular situation in the eye.</p>\",\"PeriodicalId\":73069,\"journal\":{\"name\":\"Frontiers in bioscience (Landmark edition)\",\"volume\":\"29 9\",\"pages\":\"319\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioscience (Landmark edition)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31083/j.fbl2909319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Landmark edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.fbl2909319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

自由基(如活性氧)的形成所造成的氧化应激会导致细胞和组织退化,引发各种疾病和衰老。虽然氧气是有氧生物所必需的,但它不可避免地会造成氧化应激。抗氧化剂可以防止自由基的损害,当自由基的产生和抗氧化剂的防御之间出现不平衡时,就会产生氧化应激。然而,在研究过量的抗氧化剂(几乎消除了氧化应激)是否有益于衰老和疾病易感性时,人们发现,为了维持组织和器官以及整个生命的正常平衡,基本水平的氧化应激似乎是必要的。因此,本综述旨在汇集近期最重要的论文,这些论文描述了氧的双重作用,既是生命所必需的分子,也是氧化应激的前体,而氧化应激会对生命造成危害。我们在 PubMed 和谷歌浏览器中进行了有针对性的搜索,以收集所有相关论文。然后,我们将重点放在眼睛上,因为眼睛是一个特别脆弱的器官,它的新陈代谢活动旺盛,加上直接暴露在光线和环境污染物中,会产生大量自由基(主要是 ROS)。我们对描述眼球后段和前段主要病变的相关文献进行了精选,强调氧化应激是一个重要的致病因素。此外,我们还报告了内源性和外源性抗氧化剂如何缓解这些疾病的发生和发展。最后,我们考虑了一个经常被忽视的方面:氧化剂和抗氧化剂在维持组织和器官平衡方面的平衡。人们普遍认为,当氧化剂超过抗氧化剂时,就会产生氧化应激,从而对机体的平衡产生负面影响。然而,我们强调,当抗氧化剂的存在压倒自由基的产生时,也会出现类似的危险情况,自由基的数量会急剧减少,并对衰老和寿命产生不利影响。遗憾的是,目前还没有针对眼部这种特殊情况的具体研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oxygen, the Paradox of Life and the Eye.

Oxidative stress, caused by the formation of free radicals, such as reactive oxygen species (ROS), leads to cell and tissue degradation, contributing to various diseases and aging. While oxygen is essential for aerobic organisms, it inevitably causes oxidative stress. Antioxidants protect against damage from free radicals, and oxidative stress arises when an imbalance occurs between free radical production and antioxidant defenses. However, when investigating whether an excess of antioxidants, almost eliminating oxidative stress, could benefit aging and disease susceptibility, it was observed that a basic level of oxidative stress appears necessary to maintain the correct homeostasis of tissues and organs and life in general. Therefore, this review aimed to compile the most significant and recent papers characterizing and describing the dual role of oxygen as a molecule essential for life and as a precursor of oxidative stress, which can be detrimental to life. We conducted targeted searches in PubMed and Google browsers to gather all relevant papers. We then focused on the eye, an organ particularly vulnerable due to its high metabolic activity combined with direct exposure to light and environmental pollutants, which produces a substantial number of free radicals (mainly ROS). We present a curated selection of relevant literature describing the main ocular pathologies of the posterior and anterior segments of the eye, highlighting oxidative stress as a significant contributing factor. Additionally, we report how endogenous and exogenous antioxidants can mitigate the development and progression of these diseases. Finally, we consider a frequently overlooked aspect: the balance between oxidants and antioxidants in maintaining the homeostatic equilibrium of tissues and organs. It is widely recognized that when oxidants overwhelm antioxidants, oxidative stress occurs, leading to negative consequences for the organism's homeostasis. However, we emphasize that a similarly dangerous situation can arise when the presence of antioxidants overwhelms the production of free radicals, drastically reducing their amount and adversely affecting aging and longevity. Unfortunately, no specific studies have addressed this particular situation in the eye.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
期刊最新文献
DLX5 Promotes Radioresistance in Renal Cell Carcinoma by Upregulating c-Myc Expression. Retraction: Huang Y, et al. Sophocarpine inhibits the growth of gastric cancer cells via autophagy and apoptosis. Frontiers in Bioscience-Landmark. 2019; 24: 616-627. CELF6 as an Oncogene in Colorectal Cancer: Targeting Stem-Cell-Like Properties Through Modulation of HOXA5 mRNA Stability. Effects of Arginine Vasopressin on Hippocampal Myelination in an Autism Rat Model: A RNA-seq and Mendelian Randomization Analysis. SENP1 Promotes Caspase-11 Inflammasome Activation and Aggravates Inflammatory Response in Murine Acute Lung Injury Induced by Lipopolysaccharide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1