一种含有菠萝叶纤维的壳聚糖-α-萘甲醛水凝胶薄膜,可用于伤口敷料。

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Journal of Materials Chemistry B Pub Date : 2024-09-18 DOI:10.1039/D4TB01318B
Amarjyoti Mondal, Dasuklang Lyngdoh Nongbri, Kusumita Achariya, Mahabul Haque, Kripamoy Aguan, Arijit Bhattacharya and Atanu Singha Roy
{"title":"一种含有菠萝叶纤维的壳聚糖-α-萘甲醛水凝胶薄膜,可用于伤口敷料。","authors":"Amarjyoti Mondal, Dasuklang Lyngdoh Nongbri, Kusumita Achariya, Mahabul Haque, Kripamoy Aguan, Arijit Bhattacharya and Atanu Singha Roy","doi":"10.1039/D4TB01318B","DOIUrl":null,"url":null,"abstract":"<p >In recent decades, polysaccharide-based hydrogels have gained significant attention due to their natural biocompatibility, biodegradability, and non-toxicity. The potential for using polysaccharides to synthesize hydrogels is due to their ability to support cell proliferation, which is important for practical applications, particularly in the biomedical field. In this study, we have synthesized a chitosan–α-naphthal hydrogel film using a cost-effective one-step synthesis approach. The prepared hydrogel film exhibited high encapsulation efficiency for antibacterial drugs such as ciprofloxacin and lomefloxacin, with the ability to release the antibiotics in a controlled manner over an extended period and prevent long-term bacterial infections. Moreover, the Korsmeyer and Peppas power law, based on Fickian diffusion, was employed to model the entire complex drug release process and predict the drug release behavior. The hydrogel film also shows pH-induced swelling ability due to the presence of an imine bond in the hydrogel network, which is degradable at acidic pH. The incorporated therapeutic agents having antibacterial activity were effective against Gram-negative (<em>Escherichia coli DH5α</em>) and Gram-positive (<em>Staphylococcus aureus</em> subsp. <em>aureus</em>) bacterial strains. A wound dressing material should possess mechanical strength, but the prepared hydrogel film has low mechanical strength. To increase the mechanical strength, we have infused pineapple leaf fibers (PLFs) in the film network, resulting in a mechanical strength of 1.12 ± 0.89 MPa. In addition to its mechanical strength, significant cell viability against human embryonic kidney (HEK-293) cells was observed from <em>in vitro</em> cell culture experiments for this PLF-hydrogel film. As a result, the prepared therapeutic agent-loaded hydrogel film under study meets the requirements to be considered for use as a wound dressing material.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 42","pages":" 10934-10948"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A chitosan–α-naphthaldehyde hydrogel film containing pineapple leaf fibers for wound dressing applications†\",\"authors\":\"Amarjyoti Mondal, Dasuklang Lyngdoh Nongbri, Kusumita Achariya, Mahabul Haque, Kripamoy Aguan, Arijit Bhattacharya and Atanu Singha Roy\",\"doi\":\"10.1039/D4TB01318B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In recent decades, polysaccharide-based hydrogels have gained significant attention due to their natural biocompatibility, biodegradability, and non-toxicity. The potential for using polysaccharides to synthesize hydrogels is due to their ability to support cell proliferation, which is important for practical applications, particularly in the biomedical field. In this study, we have synthesized a chitosan–α-naphthal hydrogel film using a cost-effective one-step synthesis approach. The prepared hydrogel film exhibited high encapsulation efficiency for antibacterial drugs such as ciprofloxacin and lomefloxacin, with the ability to release the antibiotics in a controlled manner over an extended period and prevent long-term bacterial infections. Moreover, the Korsmeyer and Peppas power law, based on Fickian diffusion, was employed to model the entire complex drug release process and predict the drug release behavior. The hydrogel film also shows pH-induced swelling ability due to the presence of an imine bond in the hydrogel network, which is degradable at acidic pH. The incorporated therapeutic agents having antibacterial activity were effective against Gram-negative (<em>Escherichia coli DH5α</em>) and Gram-positive (<em>Staphylococcus aureus</em> subsp. <em>aureus</em>) bacterial strains. A wound dressing material should possess mechanical strength, but the prepared hydrogel film has low mechanical strength. To increase the mechanical strength, we have infused pineapple leaf fibers (PLFs) in the film network, resulting in a mechanical strength of 1.12 ± 0.89 MPa. In addition to its mechanical strength, significant cell viability against human embryonic kidney (HEK-293) cells was observed from <em>in vitro</em> cell culture experiments for this PLF-hydrogel film. As a result, the prepared therapeutic agent-loaded hydrogel film under study meets the requirements to be considered for use as a wound dressing material.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 42\",\"pages\":\" 10934-10948\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01318b\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01318b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,多糖类水凝胶因其天然的生物相容性、生物可降解性和无毒性而备受关注。利用多糖合成水凝胶的潜力在于其支持细胞增殖的能力,这对于实际应用,尤其是生物医学领域的应用非常重要。在本研究中,我们采用经济有效的一步合成法合成了壳聚糖-α-萘水凝胶薄膜。所制备的水凝胶薄膜对环丙沙星和洛美沙星等抗菌药物具有很高的包封效率,能够长期可控地释放抗生素,防止细菌长期感染。此外,还采用了基于菲克扩散的 Korsmeyer 和 Peppas 动力定律来模拟整个复杂的药物释放过程,并预测药物释放行为。由于水凝胶网络中存在可在酸性 pH 值下降解的亚胺键,水凝胶薄膜还具有 pH 值诱导的溶胀能力。加入的抗菌治疗剂对革兰氏阴性(大肠杆菌 DH5α)和革兰氏阳性(金黄色葡萄球菌亚种)细菌菌株有效。伤口敷料应具有机械强度,但制备的水凝胶薄膜机械强度较低。为了提高机械强度,我们在薄膜网络中注入了菠萝叶纤维(PLF),使其机械强度达到 1.12 ± 0.89 兆帕。除了机械强度外,体外细胞培养实验还观察到这种菠萝叶纤维水凝胶薄膜对人类胚胎肾(HEK-293)细胞具有显著的细胞活力。因此,所制备的治疗剂负载水凝胶薄膜符合用作伤口敷料的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A chitosan–α-naphthaldehyde hydrogel film containing pineapple leaf fibers for wound dressing applications†

In recent decades, polysaccharide-based hydrogels have gained significant attention due to their natural biocompatibility, biodegradability, and non-toxicity. The potential for using polysaccharides to synthesize hydrogels is due to their ability to support cell proliferation, which is important for practical applications, particularly in the biomedical field. In this study, we have synthesized a chitosan–α-naphthal hydrogel film using a cost-effective one-step synthesis approach. The prepared hydrogel film exhibited high encapsulation efficiency for antibacterial drugs such as ciprofloxacin and lomefloxacin, with the ability to release the antibiotics in a controlled manner over an extended period and prevent long-term bacterial infections. Moreover, the Korsmeyer and Peppas power law, based on Fickian diffusion, was employed to model the entire complex drug release process and predict the drug release behavior. The hydrogel film also shows pH-induced swelling ability due to the presence of an imine bond in the hydrogel network, which is degradable at acidic pH. The incorporated therapeutic agents having antibacterial activity were effective against Gram-negative (Escherichia coli DH5α) and Gram-positive (Staphylococcus aureus subsp. aureus) bacterial strains. A wound dressing material should possess mechanical strength, but the prepared hydrogel film has low mechanical strength. To increase the mechanical strength, we have infused pineapple leaf fibers (PLFs) in the film network, resulting in a mechanical strength of 1.12 ± 0.89 MPa. In addition to its mechanical strength, significant cell viability against human embryonic kidney (HEK-293) cells was observed from in vitro cell culture experiments for this PLF-hydrogel film. As a result, the prepared therapeutic agent-loaded hydrogel film under study meets the requirements to be considered for use as a wound dressing material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
期刊最新文献
Back cover Back cover Back cover Expression of concern: Surface modification engineering of two-dimensional titanium carbide for efficient synergistic multitherapy of breast cancer Reconfiguring the endogenous electric field of a wound through a conductive hydrogel for effective exudate management to enhance skin wound healing†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1