{"title":"作为新药开发候选药物的羽扇豆醇的抗炎作用","authors":"Yun Jin Park, Dong Ho Park, Jong-Sup Bae","doi":"10.1142/S0192415X2450068X","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the anti-inflammatory properties of lupeol, a notable phytosterol found in various medicinal plants, highlighting its potential as a candidate for new drug development. We examined the effects of lupeol on heme oxygenase (HO)-1, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), as well as its impact on inflammatory markers in the lung tissues of LPS-challenged mice. Lupeol treatment enhanced HO-1 production, inhibited nuclear factor (NF)-κB activity, and reduced levels of COX-2/prostaglandin E2 (PGE2) and iNOS/nitric oxide (NO). In addition, lupeol decreased the phosphorylation of signal transducer and activator of transcription 1 (STAT-1) and promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), enhancing its binding to the anti-oxidant response element (ARE) and subsequently reducing interleukin (IL)-1β expression. <i>In vivo</i>, lupeol significantly lowered iNOS expression and tumor necrosis factor (TNF)-α levels in bronchoalveolar lavage fluid from LPS-treated mice. These findings suggest that lupeol exerts its anti-inflammatory effects by modulating key signaling pathways, positioning it as a promising candidate for the development of novel therapeutics targeting pathological inflammation.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1759-1771"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-Inflammatory Effects of Lupeol as a Candidate for New Drug Development.\",\"authors\":\"Yun Jin Park, Dong Ho Park, Jong-Sup Bae\",\"doi\":\"10.1142/S0192415X2450068X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the anti-inflammatory properties of lupeol, a notable phytosterol found in various medicinal plants, highlighting its potential as a candidate for new drug development. We examined the effects of lupeol on heme oxygenase (HO)-1, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), as well as its impact on inflammatory markers in the lung tissues of LPS-challenged mice. Lupeol treatment enhanced HO-1 production, inhibited nuclear factor (NF)-κB activity, and reduced levels of COX-2/prostaglandin E2 (PGE2) and iNOS/nitric oxide (NO). In addition, lupeol decreased the phosphorylation of signal transducer and activator of transcription 1 (STAT-1) and promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), enhancing its binding to the anti-oxidant response element (ARE) and subsequently reducing interleukin (IL)-1β expression. <i>In vivo</i>, lupeol significantly lowered iNOS expression and tumor necrosis factor (TNF)-α levels in bronchoalveolar lavage fluid from LPS-treated mice. These findings suggest that lupeol exerts its anti-inflammatory effects by modulating key signaling pathways, positioning it as a promising candidate for the development of novel therapeutics targeting pathological inflammation.</p>\",\"PeriodicalId\":94221,\"journal\":{\"name\":\"The American journal of Chinese medicine\",\"volume\":\" \",\"pages\":\"1759-1771\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The American journal of Chinese medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0192415X2450068X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American journal of Chinese medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0192415X2450068X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Anti-Inflammatory Effects of Lupeol as a Candidate for New Drug Development.
This study explores the anti-inflammatory properties of lupeol, a notable phytosterol found in various medicinal plants, highlighting its potential as a candidate for new drug development. We examined the effects of lupeol on heme oxygenase (HO)-1, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), as well as its impact on inflammatory markers in the lung tissues of LPS-challenged mice. Lupeol treatment enhanced HO-1 production, inhibited nuclear factor (NF)-κB activity, and reduced levels of COX-2/prostaglandin E2 (PGE2) and iNOS/nitric oxide (NO). In addition, lupeol decreased the phosphorylation of signal transducer and activator of transcription 1 (STAT-1) and promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), enhancing its binding to the anti-oxidant response element (ARE) and subsequently reducing interleukin (IL)-1β expression. In vivo, lupeol significantly lowered iNOS expression and tumor necrosis factor (TNF)-α levels in bronchoalveolar lavage fluid from LPS-treated mice. These findings suggest that lupeol exerts its anti-inflammatory effects by modulating key signaling pathways, positioning it as a promising candidate for the development of novel therapeutics targeting pathological inflammation.