机器学习可全面预测蛋白质日冕上多种蛋白质的相对蛋白丰度

IF 11 1区 综合性期刊 Q1 Multidisciplinary Research Pub Date : 2024-09-25 eCollection Date: 2024-01-01 DOI:10.34133/research.0487
Xiuhao Fu, Chao Yang, Yunyun Su, Chunling Liu, Haoye Qiu, Yanyan Yu, Gaoxing Su, Qingchen Zhang, Leyi Wei, Feifei Cui, Quan Zou, Zilong Zhang
{"title":"机器学习可全面预测蛋白质日冕上多种蛋白质的相对蛋白丰度","authors":"Xiuhao Fu, Chao Yang, Yunyun Su, Chunling Liu, Haoye Qiu, Yanyan Yu, Gaoxing Su, Qingchen Zhang, Leyi Wei, Feifei Cui, Quan Zou, Zilong Zhang","doi":"10.34133/research.0487","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding protein corona composition is essential for evaluating their potential applications in biomedicine. Relative protein abundance (RPA), accounting for the total proteins in the corona, is an important parameter for describing the protein corona. For the first time, we comprehensively predicted the RPA of multiple proteins on the protein corona. First, we used multiple machine learning algorithms to predict whether a protein adsorbs to a nanoparticle, which is dichotomous prediction. Then, we selected the top 3 performing machine learning algorithms in dichotomous prediction to predict the specific value of RPA, which is regression prediction. Meanwhile, we analyzed the advantages and disadvantages of different machine learning algorithms for RPA prediction through interpretable analysis. Finally, we mined important features about the RPA prediction, which provided effective suggestions for the preliminary design of protein corona. The service for the prediction of RPA is available at http://www.bioai-lab.com/PC_ML.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0487"},"PeriodicalIF":11.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423712/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Enables Comprehensive Prediction of the Relative Protein Abundance of Multiple Proteins on the Protein Corona.\",\"authors\":\"Xiuhao Fu, Chao Yang, Yunyun Su, Chunling Liu, Haoye Qiu, Yanyan Yu, Gaoxing Su, Qingchen Zhang, Leyi Wei, Feifei Cui, Quan Zou, Zilong Zhang\",\"doi\":\"10.34133/research.0487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding protein corona composition is essential for evaluating their potential applications in biomedicine. Relative protein abundance (RPA), accounting for the total proteins in the corona, is an important parameter for describing the protein corona. For the first time, we comprehensively predicted the RPA of multiple proteins on the protein corona. First, we used multiple machine learning algorithms to predict whether a protein adsorbs to a nanoparticle, which is dichotomous prediction. Then, we selected the top 3 performing machine learning algorithms in dichotomous prediction to predict the specific value of RPA, which is regression prediction. Meanwhile, we analyzed the advantages and disadvantages of different machine learning algorithms for RPA prediction through interpretable analysis. Finally, we mined important features about the RPA prediction, which provided effective suggestions for the preliminary design of protein corona. The service for the prediction of RPA is available at http://www.bioai-lab.com/PC_ML.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"7 \",\"pages\":\"0487\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423712/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0487\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0487","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

要评估蛋白质在生物医学中的潜在应用,了解蛋白质电晕的组成至关重要。蛋白质相对丰度(RPA)是描述蛋白质日冕的一个重要参数,它反映了日冕中的蛋白质总量。我们首次全面预测了蛋白质日冕上多个蛋白质的相对蛋白质丰度。首先,我们使用多种机器学习算法预测蛋白质是否吸附纳米粒子,即二分法预测。然后,我们选择在二分预测中表现最好的 3 种机器学习算法来预测 RPA 的具体值,这就是回归预测。同时,通过可解释性分析,我们分析了不同机器学习算法在 RPA 预测中的优缺点。最后,我们挖掘了 RPA 预测的重要特征,为蛋白质电晕的初步设计提供了有效建议。有关 RPA 预测的服务,请访问 http://www.bioai-lab.com/PC_ML。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Enables Comprehensive Prediction of the Relative Protein Abundance of Multiple Proteins on the Protein Corona.

Understanding protein corona composition is essential for evaluating their potential applications in biomedicine. Relative protein abundance (RPA), accounting for the total proteins in the corona, is an important parameter for describing the protein corona. For the first time, we comprehensively predicted the RPA of multiple proteins on the protein corona. First, we used multiple machine learning algorithms to predict whether a protein adsorbs to a nanoparticle, which is dichotomous prediction. Then, we selected the top 3 performing machine learning algorithms in dichotomous prediction to predict the specific value of RPA, which is regression prediction. Meanwhile, we analyzed the advantages and disadvantages of different machine learning algorithms for RPA prediction through interpretable analysis. Finally, we mined important features about the RPA prediction, which provided effective suggestions for the preliminary design of protein corona. The service for the prediction of RPA is available at http://www.bioai-lab.com/PC_ML.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
期刊最新文献
STAT2/SLC27A3/PINK1-Mediated Mitophagy Remodeling Lipid Metabolism Contributes to Pazopanib Resistance in Clear Cell Renal Cell Carcinoma. Deciphering and Targeting the ESR2-miR-10a-5p-BDNF Axis in the Prefrontal Cortex: Advancing Postpartum Depression Understanding and Therapeutics. A Heart Rate Matched Patch for Mechano-Chemical Treatment of Myocardial Infarction: Optimal Design and Transspecies Application. Cellular Characterization and Interspecies Evolution of the Tree Shrew Retina across Postnatal Lifespan. A Cellulose Ionogel with Rubber-Like Stretchability for Low-Grade Heat Harvesting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1