Xiuhao Fu, Chao Yang, Yunyun Su, Chunling Liu, Haoye Qiu, Yanyan Yu, Gaoxing Su, Qingchen Zhang, Leyi Wei, Feifei Cui, Quan Zou, Zilong Zhang
{"title":"机器学习可全面预测蛋白质日冕上多种蛋白质的相对蛋白丰度","authors":"Xiuhao Fu, Chao Yang, Yunyun Su, Chunling Liu, Haoye Qiu, Yanyan Yu, Gaoxing Su, Qingchen Zhang, Leyi Wei, Feifei Cui, Quan Zou, Zilong Zhang","doi":"10.34133/research.0487","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding protein corona composition is essential for evaluating their potential applications in biomedicine. Relative protein abundance (RPA), accounting for the total proteins in the corona, is an important parameter for describing the protein corona. For the first time, we comprehensively predicted the RPA of multiple proteins on the protein corona. First, we used multiple machine learning algorithms to predict whether a protein adsorbs to a nanoparticle, which is dichotomous prediction. Then, we selected the top 3 performing machine learning algorithms in dichotomous prediction to predict the specific value of RPA, which is regression prediction. Meanwhile, we analyzed the advantages and disadvantages of different machine learning algorithms for RPA prediction through interpretable analysis. Finally, we mined important features about the RPA prediction, which provided effective suggestions for the preliminary design of protein corona. The service for the prediction of RPA is available at http://www.bioai-lab.com/PC_ML.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0487"},"PeriodicalIF":11.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423712/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Enables Comprehensive Prediction of the Relative Protein Abundance of Multiple Proteins on the Protein Corona.\",\"authors\":\"Xiuhao Fu, Chao Yang, Yunyun Su, Chunling Liu, Haoye Qiu, Yanyan Yu, Gaoxing Su, Qingchen Zhang, Leyi Wei, Feifei Cui, Quan Zou, Zilong Zhang\",\"doi\":\"10.34133/research.0487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding protein corona composition is essential for evaluating their potential applications in biomedicine. Relative protein abundance (RPA), accounting for the total proteins in the corona, is an important parameter for describing the protein corona. For the first time, we comprehensively predicted the RPA of multiple proteins on the protein corona. First, we used multiple machine learning algorithms to predict whether a protein adsorbs to a nanoparticle, which is dichotomous prediction. Then, we selected the top 3 performing machine learning algorithms in dichotomous prediction to predict the specific value of RPA, which is regression prediction. Meanwhile, we analyzed the advantages and disadvantages of different machine learning algorithms for RPA prediction through interpretable analysis. Finally, we mined important features about the RPA prediction, which provided effective suggestions for the preliminary design of protein corona. The service for the prediction of RPA is available at http://www.bioai-lab.com/PC_ML.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"7 \",\"pages\":\"0487\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423712/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0487\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0487","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
Machine Learning Enables Comprehensive Prediction of the Relative Protein Abundance of Multiple Proteins on the Protein Corona.
Understanding protein corona composition is essential for evaluating their potential applications in biomedicine. Relative protein abundance (RPA), accounting for the total proteins in the corona, is an important parameter for describing the protein corona. For the first time, we comprehensively predicted the RPA of multiple proteins on the protein corona. First, we used multiple machine learning algorithms to predict whether a protein adsorbs to a nanoparticle, which is dichotomous prediction. Then, we selected the top 3 performing machine learning algorithms in dichotomous prediction to predict the specific value of RPA, which is regression prediction. Meanwhile, we analyzed the advantages and disadvantages of different machine learning algorithms for RPA prediction through interpretable analysis. Finally, we mined important features about the RPA prediction, which provided effective suggestions for the preliminary design of protein corona. The service for the prediction of RPA is available at http://www.bioai-lab.com/PC_ML.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.