从端到端语义场景文本特征识别视觉地点

IF 2.9 Q2 ROBOTICS Frontiers in Robotics and AI Pub Date : 2024-09-16 eCollection Date: 2024-01-01 DOI:10.3389/frobt.2024.1424883
Zobeir Raisi, John Zelek
{"title":"从端到端语义场景文本特征识别视觉地点","authors":"Zobeir Raisi, John Zelek","doi":"10.3389/frobt.2024.1424883","DOIUrl":null,"url":null,"abstract":"<p><p>We live in a visual world where text cues are abundant in urban environments. The premise for our work is for robots to capitalize on these text features for visual place recognition. A new technique is introduced that uses an end-to-end scene text detection and recognition technique to improve robot localization and mapping through Visual Place Recognition (VPR). This technique addresses several challenges such as arbitrary shaped text, illumination variation, and occlusion. The proposed model captures text strings and associated bounding boxes specifically designed for VPR tasks. The primary contribution of this work is the utilization of an end-to-end scene text spotting framework that can effectively capture irregular and occluded text in diverse environments. We conduct experimental evaluations on the Self-Collected TextPlace (SCTP) benchmark dataset, and our approach outperforms state-of-the-art methods in terms of precision and recall, which validates the effectiveness and potential of our proposed approach for VPR.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440043/pdf/","citationCount":"0","resultStr":"{\"title\":\"Visual place recognition from end-to-end semantic scene text features.\",\"authors\":\"Zobeir Raisi, John Zelek\",\"doi\":\"10.3389/frobt.2024.1424883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We live in a visual world where text cues are abundant in urban environments. The premise for our work is for robots to capitalize on these text features for visual place recognition. A new technique is introduced that uses an end-to-end scene text detection and recognition technique to improve robot localization and mapping through Visual Place Recognition (VPR). This technique addresses several challenges such as arbitrary shaped text, illumination variation, and occlusion. The proposed model captures text strings and associated bounding boxes specifically designed for VPR tasks. The primary contribution of this work is the utilization of an end-to-end scene text spotting framework that can effectively capture irregular and occluded text in diverse environments. We conduct experimental evaluations on the Self-Collected TextPlace (SCTP) benchmark dataset, and our approach outperforms state-of-the-art methods in terms of precision and recall, which validates the effectiveness and potential of our proposed approach for VPR.</p>\",\"PeriodicalId\":47597,\"journal\":{\"name\":\"Frontiers in Robotics and AI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440043/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Robotics and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frobt.2024.1424883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1424883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们生活在一个视觉世界,城市环境中充斥着大量的文字线索。我们工作的前提是让机器人利用这些文字特征进行视觉地点识别。我们引入了一种新技术,使用端到端场景文本检测和识别技术,通过视觉地点识别(VPR)改进机器人定位和绘图。该技术可应对任意形状文本、光照变化和遮挡等挑战。所提出的模型可以捕捉文本字符串和专门为 VPR 任务设计的相关边界框。这项工作的主要贡献在于采用了端到端场景文本定点框架,可以有效捕捉不同环境中的不规则和遮挡文本。我们在自选文本位置(SCTP)基准数据集上进行了实验评估,在精确度和召回率方面,我们的方法优于最先进的方法,这验证了我们提出的方法在 VPR 方面的有效性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual place recognition from end-to-end semantic scene text features.

We live in a visual world where text cues are abundant in urban environments. The premise for our work is for robots to capitalize on these text features for visual place recognition. A new technique is introduced that uses an end-to-end scene text detection and recognition technique to improve robot localization and mapping through Visual Place Recognition (VPR). This technique addresses several challenges such as arbitrary shaped text, illumination variation, and occlusion. The proposed model captures text strings and associated bounding boxes specifically designed for VPR tasks. The primary contribution of this work is the utilization of an end-to-end scene text spotting framework that can effectively capture irregular and occluded text in diverse environments. We conduct experimental evaluations on the Self-Collected TextPlace (SCTP) benchmark dataset, and our approach outperforms state-of-the-art methods in terms of precision and recall, which validates the effectiveness and potential of our proposed approach for VPR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
期刊最新文献
Cybernic robot hand-arm that realizes cooperative work as a new hand-arm for people with a single upper-limb dysfunction. Advancements in the use of AI in the diagnosis and management of inflammatory bowel disease. Remote science at sea with remotely operated vehicles. A pipeline for estimating human attention toward objects with on-board cameras on the iCub humanoid robot. Leveraging imitation learning in agricultural robotics: a comprehensive survey and comparative analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1