{"title":"运动地面滚动阻力造成的轮椅脚轮动力损失","authors":"Z Pomarat, T Marsan, A Faupin, Y Landon, B Watier","doi":"10.1080/17483107.2024.2406450","DOIUrl":null,"url":null,"abstract":"<p><p>The gross mechanical efficiency of the manual wheelchair propulsion movement is particularly low compared to other movements. The energy losses in the manual wheelchair propulsion movement are partly due to energy losses associated with the wheelchair, and especially to the rolling resistance of the wheels. The distribution of mass between the front rear wheels and the caster wheels has a significant impact on the rolling resistance. The study of the caster wheels cannot therefore be neglected due to their involvement in rolling resistance. Thus, this study aimed to evaluate the power dissipated due to rolling resistance by different caster wheels, at different speeds and under different loadings on various terrains. Four caster wheels of different shapes, diameters, and materials were tested on two surfaces representative of indoor sports surfaces at four different speeds and under four loadings. The results showed a minimal dissipated power of <math><mrow><mn>0.4</mn><mo>±</mo><mn>0.2</mn></mrow></math>W for the skate caster, on the parquet, at 0.5 m/s and under a loading of 50 N. The maximal mean power dissipated was <math><mrow><mn>43.3</mn><mo>±</mo><mn>27.6</mn></mrow></math>W still for the skate caster, but on the Taraflex, at 1.5 m/s and under loading of 200 N. The power dissipated on the parquet was lower than the one on the Taraflex. The Spherical and Omniwheel caster wheels dissipated less power than the two other casters. This study showed that caster wheels cannot be neglected in the assessment of gross mechanical efficiency, particularly in light of the power dissipated by athletes during propulsion.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wheelchair caster power losses due to rolling resistance on sports surfaces.\",\"authors\":\"Z Pomarat, T Marsan, A Faupin, Y Landon, B Watier\",\"doi\":\"10.1080/17483107.2024.2406450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gross mechanical efficiency of the manual wheelchair propulsion movement is particularly low compared to other movements. The energy losses in the manual wheelchair propulsion movement are partly due to energy losses associated with the wheelchair, and especially to the rolling resistance of the wheels. The distribution of mass between the front rear wheels and the caster wheels has a significant impact on the rolling resistance. The study of the caster wheels cannot therefore be neglected due to their involvement in rolling resistance. Thus, this study aimed to evaluate the power dissipated due to rolling resistance by different caster wheels, at different speeds and under different loadings on various terrains. Four caster wheels of different shapes, diameters, and materials were tested on two surfaces representative of indoor sports surfaces at four different speeds and under four loadings. The results showed a minimal dissipated power of <math><mrow><mn>0.4</mn><mo>±</mo><mn>0.2</mn></mrow></math>W for the skate caster, on the parquet, at 0.5 m/s and under a loading of 50 N. The maximal mean power dissipated was <math><mrow><mn>43.3</mn><mo>±</mo><mn>27.6</mn></mrow></math>W still for the skate caster, but on the Taraflex, at 1.5 m/s and under loading of 200 N. The power dissipated on the parquet was lower than the one on the Taraflex. The Spherical and Omniwheel caster wheels dissipated less power than the two other casters. This study showed that caster wheels cannot be neglected in the assessment of gross mechanical efficiency, particularly in light of the power dissipated by athletes during propulsion.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17483107.2024.2406450\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17483107.2024.2406450","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Wheelchair caster power losses due to rolling resistance on sports surfaces.
The gross mechanical efficiency of the manual wheelchair propulsion movement is particularly low compared to other movements. The energy losses in the manual wheelchair propulsion movement are partly due to energy losses associated with the wheelchair, and especially to the rolling resistance of the wheels. The distribution of mass between the front rear wheels and the caster wheels has a significant impact on the rolling resistance. The study of the caster wheels cannot therefore be neglected due to their involvement in rolling resistance. Thus, this study aimed to evaluate the power dissipated due to rolling resistance by different caster wheels, at different speeds and under different loadings on various terrains. Four caster wheels of different shapes, diameters, and materials were tested on two surfaces representative of indoor sports surfaces at four different speeds and under four loadings. The results showed a minimal dissipated power of W for the skate caster, on the parquet, at 0.5 m/s and under a loading of 50 N. The maximal mean power dissipated was W still for the skate caster, but on the Taraflex, at 1.5 m/s and under loading of 200 N. The power dissipated on the parquet was lower than the one on the Taraflex. The Spherical and Omniwheel caster wheels dissipated less power than the two other casters. This study showed that caster wheels cannot be neglected in the assessment of gross mechanical efficiency, particularly in light of the power dissipated by athletes during propulsion.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.