{"title":"用 AlphaFold2 生成的蛋白质结构模型的晶体分辨率是多少?","authors":"Oliviero Carugo","doi":"10.1021/acschembio.4c00376","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in AI-driven computational modeling, especially AlphaFold2, have revolutionized the prediction of biological macromolecule structures. AlphaFold2 enabled accurate predictions of structural domains and complex arrangements. However, computational models lack a clear metric for accuracy. This study explores whether computational models can match the crystallographic resolution of crystal structures. By comparing distances between atoms in models and crystal structures using <i>t</i> tests, it was found that AlphaFold2 models are comparable to high-resolution crystal structures (1.1 to 1.5 Å). While these models exhibit exceptional quality, their accuracy is lower than the crystal structure with resolutions better than 1 Å.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"2141-2143"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What Is the Crystallographic Resolution of Structural Models of Proteins Generated with AlphaFold2?\",\"authors\":\"Oliviero Carugo\",\"doi\":\"10.1021/acschembio.4c00376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advancements in AI-driven computational modeling, especially AlphaFold2, have revolutionized the prediction of biological macromolecule structures. AlphaFold2 enabled accurate predictions of structural domains and complex arrangements. However, computational models lack a clear metric for accuracy. This study explores whether computational models can match the crystallographic resolution of crystal structures. By comparing distances between atoms in models and crystal structures using <i>t</i> tests, it was found that AlphaFold2 models are comparable to high-resolution crystal structures (1.1 to 1.5 Å). While these models exhibit exceptional quality, their accuracy is lower than the crystal structure with resolutions better than 1 Å.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":\" \",\"pages\":\"2141-2143\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acschembio.4c00376\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00376","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
人工智能计算建模的最新进展,尤其是 AlphaFold2,彻底改变了生物大分子结构的预测。AlphaFold2 能够准确预测结构域和复杂排列。然而,计算模型缺乏明确的准确性衡量标准。本研究探讨了计算模型能否与晶体结构的晶体学分辨率相匹配。通过使用 t 检验比较模型和晶体结构中原子间的距离,发现 AlphaFold2 模型可与高分辨率晶体结构(1.1 至 1.5 Å)相媲美。虽然这些模型显示出卓越的质量,但其精确度低于分辨率高于 1 Å 的晶体结构。
What Is the Crystallographic Resolution of Structural Models of Proteins Generated with AlphaFold2?
Recent advancements in AI-driven computational modeling, especially AlphaFold2, have revolutionized the prediction of biological macromolecule structures. AlphaFold2 enabled accurate predictions of structural domains and complex arrangements. However, computational models lack a clear metric for accuracy. This study explores whether computational models can match the crystallographic resolution of crystal structures. By comparing distances between atoms in models and crystal structures using t tests, it was found that AlphaFold2 models are comparable to high-resolution crystal structures (1.1 to 1.5 Å). While these models exhibit exceptional quality, their accuracy is lower than the crystal structure with resolutions better than 1 Å.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.