Margarida Q Rodrigues, Sara Patão, Mónica Thomaz, Tiago Nunes, Paula M Alves, António Roldão
{"title":"酪氨酸酶介导的铁蛋白纳米颗粒上的抗原显示。","authors":"Margarida Q Rodrigues, Sara Patão, Mónica Thomaz, Tiago Nunes, Paula M Alves, António Roldão","doi":"10.1021/acs.bioconjchem.4c00387","DOIUrl":null,"url":null,"abstract":"<p><p>Ferritin (Ft) nanoparticles have become versatile platforms for displaying antigens, being a promising technology for vaccine development. While genetic fusion has traditionally been the preferred method for antigen display, concerns about improper folding and steric hindrance that may compromise vaccine efficacy or stability have prompted alternative approaches. Bioconjugation offers the advantage of preserving native protein structure and function, with recent advancements improving efficiency and specificity. In this study, we used tyrosinase (TYR) to bioconjugate the receptor binding domain of the SARS-CoV-2 spike protein, tagged with a tyrosine (RBD-Y), to native cysteines on Ft, resulting in RBD-Y-Ft nanoparticles. We quantified available cysteines on ferritin using Ellman's assay and monitored their reduction during the reactions. Denaturing analytics (via SDS-PAGE, Western blot, and LC-TOF-MS) confirmed the formation of RBD-Y-Ft monomers with an expected molecular weight of 46 kDa. Mass photometry and HPLC estimated a molecular weight of RBD-Y-Ft nanoparticles of 680 kDa, which was higher than that of nonfunctionalized ferritin (480 kDa), indicating successful binding of up to eight RBD-Y antigens per 24-mer Ft nanoparticle. This work enhances our understanding of how Ft nanoparticles can be engineered to present antigens, leveraging them as a robust scaffold for producing tailored-made candidate vaccines in a timely manner.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487507/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tyrosinase-Mediated Conjugation for Antigen Display on Ferritin Nanoparticles.\",\"authors\":\"Margarida Q Rodrigues, Sara Patão, Mónica Thomaz, Tiago Nunes, Paula M Alves, António Roldão\",\"doi\":\"10.1021/acs.bioconjchem.4c00387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferritin (Ft) nanoparticles have become versatile platforms for displaying antigens, being a promising technology for vaccine development. While genetic fusion has traditionally been the preferred method for antigen display, concerns about improper folding and steric hindrance that may compromise vaccine efficacy or stability have prompted alternative approaches. Bioconjugation offers the advantage of preserving native protein structure and function, with recent advancements improving efficiency and specificity. In this study, we used tyrosinase (TYR) to bioconjugate the receptor binding domain of the SARS-CoV-2 spike protein, tagged with a tyrosine (RBD-Y), to native cysteines on Ft, resulting in RBD-Y-Ft nanoparticles. We quantified available cysteines on ferritin using Ellman's assay and monitored their reduction during the reactions. Denaturing analytics (via SDS-PAGE, Western blot, and LC-TOF-MS) confirmed the formation of RBD-Y-Ft monomers with an expected molecular weight of 46 kDa. Mass photometry and HPLC estimated a molecular weight of RBD-Y-Ft nanoparticles of 680 kDa, which was higher than that of nonfunctionalized ferritin (480 kDa), indicating successful binding of up to eight RBD-Y antigens per 24-mer Ft nanoparticle. This work enhances our understanding of how Ft nanoparticles can be engineered to present antigens, leveraging them as a robust scaffold for producing tailored-made candidate vaccines in a timely manner.</p>\",\"PeriodicalId\":29,\"journal\":{\"name\":\"Bioconjugate Chemistry Bioconjugate\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487507/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry Bioconjugate\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.bioconjchem.4c00387\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry Bioconjugate","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00387","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Tyrosinase-Mediated Conjugation for Antigen Display on Ferritin Nanoparticles.
Ferritin (Ft) nanoparticles have become versatile platforms for displaying antigens, being a promising technology for vaccine development. While genetic fusion has traditionally been the preferred method for antigen display, concerns about improper folding and steric hindrance that may compromise vaccine efficacy or stability have prompted alternative approaches. Bioconjugation offers the advantage of preserving native protein structure and function, with recent advancements improving efficiency and specificity. In this study, we used tyrosinase (TYR) to bioconjugate the receptor binding domain of the SARS-CoV-2 spike protein, tagged with a tyrosine (RBD-Y), to native cysteines on Ft, resulting in RBD-Y-Ft nanoparticles. We quantified available cysteines on ferritin using Ellman's assay and monitored their reduction during the reactions. Denaturing analytics (via SDS-PAGE, Western blot, and LC-TOF-MS) confirmed the formation of RBD-Y-Ft monomers with an expected molecular weight of 46 kDa. Mass photometry and HPLC estimated a molecular weight of RBD-Y-Ft nanoparticles of 680 kDa, which was higher than that of nonfunctionalized ferritin (480 kDa), indicating successful binding of up to eight RBD-Y antigens per 24-mer Ft nanoparticle. This work enhances our understanding of how Ft nanoparticles can be engineered to present antigens, leveraging them as a robust scaffold for producing tailored-made candidate vaccines in a timely manner.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.