胶体量子点发光二极管的最新进展与挑战:重点关注带有金属氧化物纳米粒子和有机半导体的电子传输层。

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nanoscale Horizons Pub Date : 2024-09-25 DOI:10.1039/d4nh00370e
Jaehoon Kim
{"title":"胶体量子点发光二极管的最新进展与挑战:重点关注带有金属氧化物纳米粒子和有机半导体的电子传输层。","authors":"Jaehoon Kim","doi":"10.1039/d4nh00370e","DOIUrl":null,"url":null,"abstract":"<p><p>Colloidal quantum dots (QDs) are highly promising for display technologies due to their distinctive optical characteristics, such as tunable emission wavelengths, narrow emission spectra, and superb photoluminescence quantum yields. Over the last decade, both academic and industrial research have substantially advanced quantum dot light-emitting diode (QLED) technology, primarily through the development of higher-quality QDs and more refined device structures. A key element of these advancements includes progress in the electron transport layer (ETL) technology, with metal oxide (MO) nanoparticles (NPs) like ZnO and ZnMgO emerging as superior choices due to their robust performance. Nevertheless, scalability challenges, such as particle agglomeration and positive aging, have prompted research into organic semiconductors that match the performance of MO NPs. This review aims to provide a detailed examination and comprehensive understanding of recent advances and challenges in ETLs based on both MO NPs and organic semiconductors, guiding future commercialization efforts for QLEDs.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent progresses and challenges in colloidal quantum dot light-emitting diodes: a focus on electron transport layers with metal oxide nanoparticles and organic semiconductors.\",\"authors\":\"Jaehoon Kim\",\"doi\":\"10.1039/d4nh00370e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colloidal quantum dots (QDs) are highly promising for display technologies due to their distinctive optical characteristics, such as tunable emission wavelengths, narrow emission spectra, and superb photoluminescence quantum yields. Over the last decade, both academic and industrial research have substantially advanced quantum dot light-emitting diode (QLED) technology, primarily through the development of higher-quality QDs and more refined device structures. A key element of these advancements includes progress in the electron transport layer (ETL) technology, with metal oxide (MO) nanoparticles (NPs) like ZnO and ZnMgO emerging as superior choices due to their robust performance. Nevertheless, scalability challenges, such as particle agglomeration and positive aging, have prompted research into organic semiconductors that match the performance of MO NPs. This review aims to provide a detailed examination and comprehensive understanding of recent advances and challenges in ETLs based on both MO NPs and organic semiconductors, guiding future commercialization efforts for QLEDs.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4nh00370e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nh00370e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

胶体量子点(QDs)具有独特的光学特性,如可调发射波长、窄发射光谱和极高的光致发光量子产率,因此在显示技术领域大有可为。在过去十年中,学术研究和工业研究都极大地推动了量子点发光二极管(QLED)技术的发展,主要是通过开发更高质量的量子点和更精细的器件结构。这些进步的关键因素包括电子传输层(ETL)技术的进步,氧化锌和氧化锌镁等金属氧化物纳米粒子(NPs)因其强大的性能而成为最佳选择。然而,颗粒团聚和正老化等可扩展性挑战促使人们研究与 MO NPs 性能相匹配的有机半导体。本综述旨在详细分析和全面了解基于 MO NPs 和有机半导体的 ETL 的最新进展和挑战,为未来 QLED 的商业化工作提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent progresses and challenges in colloidal quantum dot light-emitting diodes: a focus on electron transport layers with metal oxide nanoparticles and organic semiconductors.

Colloidal quantum dots (QDs) are highly promising for display technologies due to their distinctive optical characteristics, such as tunable emission wavelengths, narrow emission spectra, and superb photoluminescence quantum yields. Over the last decade, both academic and industrial research have substantially advanced quantum dot light-emitting diode (QLED) technology, primarily through the development of higher-quality QDs and more refined device structures. A key element of these advancements includes progress in the electron transport layer (ETL) technology, with metal oxide (MO) nanoparticles (NPs) like ZnO and ZnMgO emerging as superior choices due to their robust performance. Nevertheless, scalability challenges, such as particle agglomeration and positive aging, have prompted research into organic semiconductors that match the performance of MO NPs. This review aims to provide a detailed examination and comprehensive understanding of recent advances and challenges in ETLs based on both MO NPs and organic semiconductors, guiding future commercialization efforts for QLEDs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
期刊最新文献
Crucial role of structural design on performance of cryogel-based EMI shields: an experimental review. How to recognize clustering of luminescent defects in single-wall carbon nanotubes. A stochastic photo-responsive memristive neuron for an in-sensor visual system based on a restricted Boltzmann machine. Development of supported intermetallic compounds: advancing the Frontiers of heterogeneous catalysis. Viral capsid structural assembly governs the reovirus binding interface to NgR1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1