{"title":"匹配调整间接比较中的不确定性?比较方差估计方法的模拟研究。","authors":"Conor O. Chandler, Irina Proskorovsky","doi":"10.1002/jrsm.1759","DOIUrl":null,"url":null,"abstract":"<p>In health technology assessment, matching-adjusted indirect comparison (MAIC) is the most common method for pairwise comparisons that control for imbalances in baseline characteristics across trials. One of the primary challenges in MAIC is the need to properly account for the additional uncertainty introduced by the matching process. Limited evidence and guidance are available on variance estimation in MAICs. Therefore, we conducted a comprehensive Monte Carlo simulation study to evaluate the performance of different statistical methods across 108 scenarios. Four general approaches for variance estimation were compared in both anchored and unanchored MAICs of binary and time-to-event outcomes: (1) conventional estimators (CE) using raw weights; (2) CE using weights rescaled to the effective sample size (ESS); (3) robust sandwich estimators; and (4) bootstrapping. Several variants of sandwich estimators and bootstrap methods were tested. Performance was quantified on the basis of empirical coverage probabilities for 95% confidence intervals and variability ratios. Variability was underestimated by CE + raw weights when population overlap was poor or moderate. Despite several theoretical limitations, CE + ESS weights accurately estimated uncertainty across most scenarios. Original implementations of sandwich estimators had a downward bias in MAICs with a small ESS, and finite sample adjustments led to marked improvements. Bootstrapping was unstable if population overlap was poor and the sample size was limited. All methods produced valid coverage probabilities and standard errors in cases of strong population overlap. Our findings indicate that the sample size, population overlap, and outcome type are important considerations for variance estimation in MAICs.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 6","pages":"1094-1110"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1759","citationCount":"0","resultStr":"{\"title\":\"Uncertain about uncertainty in matching-adjusted indirect comparisons? A simulation study to compare methods for variance estimation\",\"authors\":\"Conor O. Chandler, Irina Proskorovsky\",\"doi\":\"10.1002/jrsm.1759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In health technology assessment, matching-adjusted indirect comparison (MAIC) is the most common method for pairwise comparisons that control for imbalances in baseline characteristics across trials. One of the primary challenges in MAIC is the need to properly account for the additional uncertainty introduced by the matching process. Limited evidence and guidance are available on variance estimation in MAICs. Therefore, we conducted a comprehensive Monte Carlo simulation study to evaluate the performance of different statistical methods across 108 scenarios. Four general approaches for variance estimation were compared in both anchored and unanchored MAICs of binary and time-to-event outcomes: (1) conventional estimators (CE) using raw weights; (2) CE using weights rescaled to the effective sample size (ESS); (3) robust sandwich estimators; and (4) bootstrapping. Several variants of sandwich estimators and bootstrap methods were tested. Performance was quantified on the basis of empirical coverage probabilities for 95% confidence intervals and variability ratios. Variability was underestimated by CE + raw weights when population overlap was poor or moderate. Despite several theoretical limitations, CE + ESS weights accurately estimated uncertainty across most scenarios. Original implementations of sandwich estimators had a downward bias in MAICs with a small ESS, and finite sample adjustments led to marked improvements. Bootstrapping was unstable if population overlap was poor and the sample size was limited. All methods produced valid coverage probabilities and standard errors in cases of strong population overlap. Our findings indicate that the sample size, population overlap, and outcome type are important considerations for variance estimation in MAICs.</p>\",\"PeriodicalId\":226,\"journal\":{\"name\":\"Research Synthesis Methods\",\"volume\":\"15 6\",\"pages\":\"1094-1110\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1759\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Synthesis Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1759\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1759","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Uncertain about uncertainty in matching-adjusted indirect comparisons? A simulation study to compare methods for variance estimation
In health technology assessment, matching-adjusted indirect comparison (MAIC) is the most common method for pairwise comparisons that control for imbalances in baseline characteristics across trials. One of the primary challenges in MAIC is the need to properly account for the additional uncertainty introduced by the matching process. Limited evidence and guidance are available on variance estimation in MAICs. Therefore, we conducted a comprehensive Monte Carlo simulation study to evaluate the performance of different statistical methods across 108 scenarios. Four general approaches for variance estimation were compared in both anchored and unanchored MAICs of binary and time-to-event outcomes: (1) conventional estimators (CE) using raw weights; (2) CE using weights rescaled to the effective sample size (ESS); (3) robust sandwich estimators; and (4) bootstrapping. Several variants of sandwich estimators and bootstrap methods were tested. Performance was quantified on the basis of empirical coverage probabilities for 95% confidence intervals and variability ratios. Variability was underestimated by CE + raw weights when population overlap was poor or moderate. Despite several theoretical limitations, CE + ESS weights accurately estimated uncertainty across most scenarios. Original implementations of sandwich estimators had a downward bias in MAICs with a small ESS, and finite sample adjustments led to marked improvements. Bootstrapping was unstable if population overlap was poor and the sample size was limited. All methods produced valid coverage probabilities and standard errors in cases of strong population overlap. Our findings indicate that the sample size, population overlap, and outcome type are important considerations for variance estimation in MAICs.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.