慢性阻塞性肺病患者气道平滑肌细胞中 Semaphorin3E/PlexinD1 的表达。

IF 3.6 2区 医学 Q1 PHYSIOLOGY American journal of physiology. Lung cellular and molecular physiology Pub Date : 2024-12-01 Epub Date: 2024-09-24 DOI:10.1152/ajplung.00284.2023
Duaa Alsubait, Huda Fatima Rajani, Lianyu Shan, Latifa Koussih, Andrew J Halayko, Bouchaib Lamkhioued, Abdelilah S Gounni
{"title":"慢性阻塞性肺病患者气道平滑肌细胞中 Semaphorin3E/PlexinD1 的表达。","authors":"Duaa Alsubait, Huda Fatima Rajani, Lianyu Shan, Latifa Koussih, Andrew J Halayko, Bouchaib Lamkhioued, Abdelilah S Gounni","doi":"10.1152/ajplung.00284.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Semaphorin3E (Sema3E) is a member of axon guidance proteins that have emerged recently as essential regulators of cell migration and proliferation. It binds to PlexinD1 with high affinity and is expressed in different cell types, including immune, cancer, and epithelial cells. Recent work in our lab has revealed a critical immunoregulatory role of Sema3E in experimental allergic asthma; however, its role in chronic obstructive pulmonary disease (COPD) remains unclear. This study aimed to investigate the expression of Sema3E and its receptor, PlexinD1, in the airways of patients with COPD and whether Sema3E regulates airway smooth muscle (ASM) cell proliferation, a key feature of airway remodeling in COPD. We first demonstrate that human ASM cells obtained from COPD express Sema3E and PlexinD1 at both mRNA and protein levels. Also, bronchial sections from patients with COPD displayed immunoreactivity of Sema3E and its receptor PlexinD1, suggestive of functional contribution of Sema3E in airway remodeling. In contrast to ASM cells from healthy donors, Sema3E did not inhibit the platelet-derived growth factor (PDGF) induced cell proliferation in ASM cells of patients with COPD that were consistent with the binding of endogenous Sema3E to its receptors on the cell surface and the expression and release of p61KDa-Sema3E isoform. Our results support the Sema3E-PlexinD1 axis involvement in COPD airway smooth muscle remodeling.<b>NEW & NOTEWORTHY</b> Semaphorin3E (Sema3E), a protein guiding cell movement, is found in various cell types like neural, immune, cancer, and epithelial cells. This study examines Sema3E in chronic obstructive pulmonary disease (COPD) airways. In patients with COPD, airway smooth muscle cells express Sema3E and its receptor PlxD1. Unlike healthy cells, Sema3E does not hinder cell proliferation in COPD, indicating involvement in airway remodeling. These findings highlight the Sema3E-PlxD1 axis in COPD airway changes.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L831-L838"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expression of Semaphorin3E/PlexinD1 in human airway smooth muscle cells of patients with COPD.\",\"authors\":\"Duaa Alsubait, Huda Fatima Rajani, Lianyu Shan, Latifa Koussih, Andrew J Halayko, Bouchaib Lamkhioued, Abdelilah S Gounni\",\"doi\":\"10.1152/ajplung.00284.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Semaphorin3E (Sema3E) is a member of axon guidance proteins that have emerged recently as essential regulators of cell migration and proliferation. It binds to PlexinD1 with high affinity and is expressed in different cell types, including immune, cancer, and epithelial cells. Recent work in our lab has revealed a critical immunoregulatory role of Sema3E in experimental allergic asthma; however, its role in chronic obstructive pulmonary disease (COPD) remains unclear. This study aimed to investigate the expression of Sema3E and its receptor, PlexinD1, in the airways of patients with COPD and whether Sema3E regulates airway smooth muscle (ASM) cell proliferation, a key feature of airway remodeling in COPD. We first demonstrate that human ASM cells obtained from COPD express Sema3E and PlexinD1 at both mRNA and protein levels. Also, bronchial sections from patients with COPD displayed immunoreactivity of Sema3E and its receptor PlexinD1, suggestive of functional contribution of Sema3E in airway remodeling. In contrast to ASM cells from healthy donors, Sema3E did not inhibit the platelet-derived growth factor (PDGF) induced cell proliferation in ASM cells of patients with COPD that were consistent with the binding of endogenous Sema3E to its receptors on the cell surface and the expression and release of p61KDa-Sema3E isoform. Our results support the Sema3E-PlexinD1 axis involvement in COPD airway smooth muscle remodeling.<b>NEW & NOTEWORTHY</b> Semaphorin3E (Sema3E), a protein guiding cell movement, is found in various cell types like neural, immune, cancer, and epithelial cells. This study examines Sema3E in chronic obstructive pulmonary disease (COPD) airways. In patients with COPD, airway smooth muscle cells express Sema3E and its receptor PlxD1. Unlike healthy cells, Sema3E does not hinder cell proliferation in COPD, indicating involvement in airway remodeling. These findings highlight the Sema3E-PlxD1 axis in COPD airway changes.</p>\",\"PeriodicalId\":7593,\"journal\":{\"name\":\"American journal of physiology. Lung cellular and molecular physiology\",\"volume\":\" \",\"pages\":\"L831-L838\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Lung cellular and molecular physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajplung.00284.2023\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00284.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Semaphorin-3E(sema3E)是轴突导向蛋白的一种,最近已成为细胞迁移和增殖的重要调节因子。它与 plexinD1 具有高亲和力,可在不同类型的细胞中表达,包括免疫细胞、癌细胞和上皮细胞。我们实验室最近的研究揭示了 sema3E 在实验性过敏性哮喘中的关键免疫调节作用;然而,它在慢性阻塞性肺病中的作用仍不清楚。本研究旨在调查sema3E及其受体plexinD1在慢性阻塞性肺病患者气道中的表达,以及sema3E是否调控气道平滑肌(ASM)细胞增殖,这是慢性阻塞性肺病气道重塑的一个关键特征。我们首先证明了慢性阻塞性肺病患者的气道平滑肌细胞在 mRNA 和蛋白水平上表达 sema3E 和 plexinD1。此外,慢性阻塞性肺病患者的支气管切片显示出 sema3E 及其受体 plexinD1 的免疫反应,这表明 sema3E 在气道重塑中的功能性作用。与健康供体的 ASM 细胞相比,sema3E 并未抑制 COPD 患者 ASM 细胞中血小板衍生生长因子(PDGF)诱导的细胞增殖,这与内源性 sema3E 与细胞表面受体的结合以及 p61KDa-sema3E 异构体的表达和释放是一致的。我们的研究结果支持 sema3E-plexinD1 轴参与 COPD 气道平滑肌重塑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Expression of Semaphorin3E/PlexinD1 in human airway smooth muscle cells of patients with COPD.

Semaphorin3E (Sema3E) is a member of axon guidance proteins that have emerged recently as essential regulators of cell migration and proliferation. It binds to PlexinD1 with high affinity and is expressed in different cell types, including immune, cancer, and epithelial cells. Recent work in our lab has revealed a critical immunoregulatory role of Sema3E in experimental allergic asthma; however, its role in chronic obstructive pulmonary disease (COPD) remains unclear. This study aimed to investigate the expression of Sema3E and its receptor, PlexinD1, in the airways of patients with COPD and whether Sema3E regulates airway smooth muscle (ASM) cell proliferation, a key feature of airway remodeling in COPD. We first demonstrate that human ASM cells obtained from COPD express Sema3E and PlexinD1 at both mRNA and protein levels. Also, bronchial sections from patients with COPD displayed immunoreactivity of Sema3E and its receptor PlexinD1, suggestive of functional contribution of Sema3E in airway remodeling. In contrast to ASM cells from healthy donors, Sema3E did not inhibit the platelet-derived growth factor (PDGF) induced cell proliferation in ASM cells of patients with COPD that were consistent with the binding of endogenous Sema3E to its receptors on the cell surface and the expression and release of p61KDa-Sema3E isoform. Our results support the Sema3E-PlexinD1 axis involvement in COPD airway smooth muscle remodeling.NEW & NOTEWORTHY Semaphorin3E (Sema3E), a protein guiding cell movement, is found in various cell types like neural, immune, cancer, and epithelial cells. This study examines Sema3E in chronic obstructive pulmonary disease (COPD) airways. In patients with COPD, airway smooth muscle cells express Sema3E and its receptor PlxD1. Unlike healthy cells, Sema3E does not hinder cell proliferation in COPD, indicating involvement in airway remodeling. These findings highlight the Sema3E-PlxD1 axis in COPD airway changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
期刊最新文献
Disruption of immune responses by type 1 diabetes exacerbates SARS-CoV-2 mediated lung injury. Eosinophils prevent diet-induced airway hyperresponsiveness in mice on a high-fat diet. Expression of Semaphorin3E/PlexinD1 in human airway smooth muscle cells of patients with COPD. Identification of FGFR4 as a regulator of myofibroblast differentiation in pulmonary fibrosis. Inference of alveolar capillary network connectivity from blood flow dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1