从血流动力学推断肺泡毛细血管网络的连通性

IF 3.6 2区 医学 Q1 PHYSIOLOGY American journal of physiology. Lung cellular and molecular physiology Pub Date : 2024-12-01 Epub Date: 2024-09-25 DOI:10.1152/ajplung.00025.2024
Kerstin Schmid, Andy L Olivares, Oscar Camara, Wolfgang M Kuebler, Matthias Ochs, Andreas C Hocke, Sabine C Fischer
{"title":"从血流动力学推断肺泡毛细血管网络的连通性","authors":"Kerstin Schmid, Andy L Olivares, Oscar Camara, Wolfgang M Kuebler, Matthias Ochs, Andreas C Hocke, Sabine C Fischer","doi":"10.1152/ajplung.00025.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The intricate lung structure is crucial for gas exchange within the alveolar region. Despite extensive research, questions remain about the connection between capillaries and the vascular tree. We propose a computational approach combining three-dimensional (3-D) morphological modeling with computational fluid dynamics simulations to explore alveolar capillary network connectivity based on blood flow dynamics. We developed three-dimensional sheet-flow models to accurately represent alveolar capillary morphology and conducted simulations to predict flow velocities and pressure distributions. Our approach leverages functional features to identify plausible system architectures. Given capillary flow velocities and arteriole-to-venule pressure drops, we deduced arteriole connectivity details. Preliminary analyses for nonhuman species indicate a single alveolus connects to at least two 20-µm arterioles or one 30-µm arteriole. Hence, our approach narrows down potential connectivity scenarios, but a unique solution may not always be expected. Integrating our blood flow model results into our previously published gas exchange application, Alvin, we linked these scenarios to gas exchange efficiency. We found that increased blood flow velocity correlates with higher gas exchange efficiency. Our study provides insights into pulmonary microvasculature structure by evaluating blood flow dynamics, offering a new strategy to explore the morphology-physiology relationship that is applicable to other tissues and organs. Future availability of experimental data will be crucial in validating and refining our computational models and hypotheses.<b>NEW & NOTEWORTHY</b> The alveolus is pivotal for gas exchange. Its complex, dynamic nature makes structural experimental studies challenging. Computational modeling offers an alternative. We developed a data-based three-dimensional (3-D) model of the alveolar capillary network and performed blood flow simulations within it. Choosing a novel perspective, we inferred structure from function. We systematically varied the properties of vessels connected to our capillary network and analyzed simulation results for blood flow and gas exchange to obtain plausible vessel configurations.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L852-L866"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference of alveolar capillary network connectivity from blood flow dynamics.\",\"authors\":\"Kerstin Schmid, Andy L Olivares, Oscar Camara, Wolfgang M Kuebler, Matthias Ochs, Andreas C Hocke, Sabine C Fischer\",\"doi\":\"10.1152/ajplung.00025.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intricate lung structure is crucial for gas exchange within the alveolar region. Despite extensive research, questions remain about the connection between capillaries and the vascular tree. We propose a computational approach combining three-dimensional (3-D) morphological modeling with computational fluid dynamics simulations to explore alveolar capillary network connectivity based on blood flow dynamics. We developed three-dimensional sheet-flow models to accurately represent alveolar capillary morphology and conducted simulations to predict flow velocities and pressure distributions. Our approach leverages functional features to identify plausible system architectures. Given capillary flow velocities and arteriole-to-venule pressure drops, we deduced arteriole connectivity details. Preliminary analyses for nonhuman species indicate a single alveolus connects to at least two 20-µm arterioles or one 30-µm arteriole. Hence, our approach narrows down potential connectivity scenarios, but a unique solution may not always be expected. Integrating our blood flow model results into our previously published gas exchange application, Alvin, we linked these scenarios to gas exchange efficiency. We found that increased blood flow velocity correlates with higher gas exchange efficiency. Our study provides insights into pulmonary microvasculature structure by evaluating blood flow dynamics, offering a new strategy to explore the morphology-physiology relationship that is applicable to other tissues and organs. Future availability of experimental data will be crucial in validating and refining our computational models and hypotheses.<b>NEW & NOTEWORTHY</b> The alveolus is pivotal for gas exchange. Its complex, dynamic nature makes structural experimental studies challenging. Computational modeling offers an alternative. We developed a data-based three-dimensional (3-D) model of the alveolar capillary network and performed blood flow simulations within it. Choosing a novel perspective, we inferred structure from function. We systematically varied the properties of vessels connected to our capillary network and analyzed simulation results for blood flow and gas exchange to obtain plausible vessel configurations.</p>\",\"PeriodicalId\":7593,\"journal\":{\"name\":\"American journal of physiology. Lung cellular and molecular physiology\",\"volume\":\" \",\"pages\":\"L852-L866\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Lung cellular and molecular physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajplung.00025.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00025.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

错综复杂的肺部结构对肺泡内的气体交换至关重要。尽管进行了大量研究,但关于毛细血管和血管树之间的联系仍然存在疑问。我们提出了一种将三维形态建模与计算流体动力学模拟相结合的计算方法,以探索基于血流动力学的肺泡毛细血管网络连接性。我们开发了三维片流模型,以准确表示肺泡毛细血管形态,并进行模拟以预测流速和压力分布。我们的方法利用功能特征来识别可信的系统架构。考虑到毛细血管的流速和动脉小管到肺泡的压降,我们推断出了动脉小管连接的细节。对非人类物种的初步分析表明,一个肺泡至少连接两个 20 微米的动脉血管或一个 30 微米的动脉血管。因此,我们的方法缩小了潜在的连接方案,但不一定总能找到唯一的解决方案。我们将血流模型结果整合到之前发布的气体交换应用 Alvin 中,将这些方案与气体交换效率联系起来。我们发现,血流速度的增加与较高的气体交换效率相关。我们的研究通过评估血流动力学深入了解了肺部微血管结构,为探索形态生理学关系提供了一种新策略,并适用于其他组织和器官。未来的实验数据对于验证和完善我们的计算模型和假设至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inference of alveolar capillary network connectivity from blood flow dynamics.

The intricate lung structure is crucial for gas exchange within the alveolar region. Despite extensive research, questions remain about the connection between capillaries and the vascular tree. We propose a computational approach combining three-dimensional (3-D) morphological modeling with computational fluid dynamics simulations to explore alveolar capillary network connectivity based on blood flow dynamics. We developed three-dimensional sheet-flow models to accurately represent alveolar capillary morphology and conducted simulations to predict flow velocities and pressure distributions. Our approach leverages functional features to identify plausible system architectures. Given capillary flow velocities and arteriole-to-venule pressure drops, we deduced arteriole connectivity details. Preliminary analyses for nonhuman species indicate a single alveolus connects to at least two 20-µm arterioles or one 30-µm arteriole. Hence, our approach narrows down potential connectivity scenarios, but a unique solution may not always be expected. Integrating our blood flow model results into our previously published gas exchange application, Alvin, we linked these scenarios to gas exchange efficiency. We found that increased blood flow velocity correlates with higher gas exchange efficiency. Our study provides insights into pulmonary microvasculature structure by evaluating blood flow dynamics, offering a new strategy to explore the morphology-physiology relationship that is applicable to other tissues and organs. Future availability of experimental data will be crucial in validating and refining our computational models and hypotheses.NEW & NOTEWORTHY The alveolus is pivotal for gas exchange. Its complex, dynamic nature makes structural experimental studies challenging. Computational modeling offers an alternative. We developed a data-based three-dimensional (3-D) model of the alveolar capillary network and performed blood flow simulations within it. Choosing a novel perspective, we inferred structure from function. We systematically varied the properties of vessels connected to our capillary network and analyzed simulation results for blood flow and gas exchange to obtain plausible vessel configurations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
期刊最新文献
Disruption of immune responses by type 1 diabetes exacerbates SARS-CoV-2 mediated lung injury. Eosinophils prevent diet-induced airway hyperresponsiveness in mice on a high-fat diet. Expression of Semaphorin3E/PlexinD1 in human airway smooth muscle cells of patients with COPD. Identification of FGFR4 as a regulator of myofibroblast differentiation in pulmonary fibrosis. Inference of alveolar capillary network connectivity from blood flow dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1