探索色氨酸代谢:从代谢疾病的平衡紊乱到诊断和治疗潜力的转变。

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Biochemical pharmacology Pub Date : 2024-09-25 DOI:10.1016/j.bcp.2024.116554
Zhizhong Luo , Yuqing Liu , Xin Wang , Faxin Fan , Zhenzhen Yang , Duosheng Luo
{"title":"探索色氨酸代谢:从代谢疾病的平衡紊乱到诊断和治疗潜力的转变。","authors":"Zhizhong Luo ,&nbsp;Yuqing Liu ,&nbsp;Xin Wang ,&nbsp;Faxin Fan ,&nbsp;Zhenzhen Yang ,&nbsp;Duosheng Luo","doi":"10.1016/j.bcp.2024.116554","DOIUrl":null,"url":null,"abstract":"<div><div>The rapidly rising prevalence of metabolic diseases has turned them into an escalating global health concern. By producing or altering metabolic products, the gut microbiota plays a pivotal role in maintaining human health and influencing disease development. These metabolites originate from the host itself or the external environment. In the system of interactions between microbes and the host, tryptophan (Trp) plays a central role in metabolic processes. As the amino acid in the human body that must be obtained through dietary intake, it is crucial for various physiological functions. Trp can be metabolized in the gut into three main products: The gut microbiota regulates the transformation of 5-hydroxytryptamine (5-HT, serotonin), kynurenine (Kyn), and various indole derivatives. It has been revealed that a substantial correlation exists between alterations in Trp metabolism and the initiation and progression of metabolic disorders, including obesity, diabetes, non-alcoholic fatty liver disease, and atherosclerosis, but Trp metabolites have not been comprehensively reviewed in metabolic diseases. As such, this review summarizes and analyzes the latest research, emphasizing the importance of further studying Trp metabolism within the gut microbiota to understand and treat metabolic diseases. This carries potential significance for improving human health and may introduce new therapeutic strategies.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"230 ","pages":"Article 116554"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring tryptophan metabolism: The transition from disturbed balance to diagnostic and therapeutic potential in metabolic diseases\",\"authors\":\"Zhizhong Luo ,&nbsp;Yuqing Liu ,&nbsp;Xin Wang ,&nbsp;Faxin Fan ,&nbsp;Zhenzhen Yang ,&nbsp;Duosheng Luo\",\"doi\":\"10.1016/j.bcp.2024.116554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapidly rising prevalence of metabolic diseases has turned them into an escalating global health concern. By producing or altering metabolic products, the gut microbiota plays a pivotal role in maintaining human health and influencing disease development. These metabolites originate from the host itself or the external environment. In the system of interactions between microbes and the host, tryptophan (Trp) plays a central role in metabolic processes. As the amino acid in the human body that must be obtained through dietary intake, it is crucial for various physiological functions. Trp can be metabolized in the gut into three main products: The gut microbiota regulates the transformation of 5-hydroxytryptamine (5-HT, serotonin), kynurenine (Kyn), and various indole derivatives. It has been revealed that a substantial correlation exists between alterations in Trp metabolism and the initiation and progression of metabolic disorders, including obesity, diabetes, non-alcoholic fatty liver disease, and atherosclerosis, but Trp metabolites have not been comprehensively reviewed in metabolic diseases. As such, this review summarizes and analyzes the latest research, emphasizing the importance of further studying Trp metabolism within the gut microbiota to understand and treat metabolic diseases. This carries potential significance for improving human health and may introduce new therapeutic strategies.</div></div>\",\"PeriodicalId\":8806,\"journal\":{\"name\":\"Biochemical pharmacology\",\"volume\":\"230 \",\"pages\":\"Article 116554\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006295224005549\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295224005549","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

代谢性疾病的发病率迅速上升,已成为日益严重的全球健康问题。通过产生或改变代谢产物,肠道微生物群在维持人类健康和影响疾病发展方面发挥着举足轻重的作用。这些代谢产物来自宿主本身或外部环境。在微生物与宿主的相互作用系统中,色氨酸(Trp)在代谢过程中发挥着核心作用。色氨酸是人体内必须从膳食中获取的氨基酸,对各种生理功能至关重要。Trp 可在肠道中代谢为三种主要产物:肠道微生物群调节 5-羟色胺(5-HT,血清素)、犬尿氨酸(Kyn)和各种吲哚衍生物的转化。研究发现,Trp 代谢的改变与代谢性疾病(包括肥胖、糖尿病、非酒精性脂肪肝和动脉粥样硬化)的发生和发展之间存在很大的相关性,但尚未对代谢性疾病中的 Trp 代谢物进行全面研究。因此,本综述总结并分析了最新研究,强调进一步研究肠道微生物群中的 Trp 代谢对了解和治疗代谢性疾病的重要性。这对改善人类健康具有潜在意义,并可能引入新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring tryptophan metabolism: The transition from disturbed balance to diagnostic and therapeutic potential in metabolic diseases
The rapidly rising prevalence of metabolic diseases has turned them into an escalating global health concern. By producing or altering metabolic products, the gut microbiota plays a pivotal role in maintaining human health and influencing disease development. These metabolites originate from the host itself or the external environment. In the system of interactions between microbes and the host, tryptophan (Trp) plays a central role in metabolic processes. As the amino acid in the human body that must be obtained through dietary intake, it is crucial for various physiological functions. Trp can be metabolized in the gut into three main products: The gut microbiota regulates the transformation of 5-hydroxytryptamine (5-HT, serotonin), kynurenine (Kyn), and various indole derivatives. It has been revealed that a substantial correlation exists between alterations in Trp metabolism and the initiation and progression of metabolic disorders, including obesity, diabetes, non-alcoholic fatty liver disease, and atherosclerosis, but Trp metabolites have not been comprehensively reviewed in metabolic diseases. As such, this review summarizes and analyzes the latest research, emphasizing the importance of further studying Trp metabolism within the gut microbiota to understand and treat metabolic diseases. This carries potential significance for improving human health and may introduce new therapeutic strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical pharmacology
Biochemical pharmacology 医学-药学
CiteScore
10.30
自引率
1.70%
发文量
420
审稿时长
17 days
期刊介绍: Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics. The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process. All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review. While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.
期刊最新文献
Exploring flavonoids as potent SLC46A3 inhibitors: Insights from the structural characteristics of flavonoid-SLC46A3 interactions. Estrogenic actions of alkaloids: Structural characteristics and molecular mechanisms. The LDL Receptor-Related Protein 1: Mechanisms and roles in promoting Aβ efflux transporter in Alzheimer's disease. Exploring the potential of TGFβ as a diagnostic marker and therapeutic target against cancer. Metallodrugs: Synthesis, mechanism of action and nanoencapsulation for targeted chemotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1