Aldana Magalí Gola , María Bucci-Muñoz , Juan Pablo Rigalli , María Paula Ceballos , María Laura Ruiz
{"title":"RNA 结合蛋白 IGF2BP1 在癌症多药耐药性中的作用","authors":"Aldana Magalí Gola , María Bucci-Muñoz , Juan Pablo Rigalli , María Paula Ceballos , María Laura Ruiz","doi":"10.1016/j.bcp.2024.116555","DOIUrl":null,"url":null,"abstract":"<div><div>The insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1), a member of a conserved family of single-stranded RNA-binding proteins (IGF2BP1-3), is expressed in a broad range of fetal tissues, placenta and more than sixteen cancer types but only in a limited number of normal adult tissues. IGF2BP1is required for the transport from nucleus to cytoplasm of certain mRNAs that play essential roles in embryogenesis, carcinogenesis, and multidrug resistance (MDR), by affecting their stability, translation, or localization. The purpose of this review is to gather and present information on MDR mechanisms in cancer and the significance of IGF2BP1 in this context. Within this review, we will provide an overview of IGF2BP1, including its tissue distribution, expression, molecular targets in the context of tumorigenesis and its inhibitors. Our main focus will be on elucidating the interplay between IGF2BP1 and MDR, particularly with regard to chemoresistance mediated by ABC transporters.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"230 ","pages":"Article 116555"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of the RNA binding protein IGF2BP1 in cancer multidrug resistance\",\"authors\":\"Aldana Magalí Gola , María Bucci-Muñoz , Juan Pablo Rigalli , María Paula Ceballos , María Laura Ruiz\",\"doi\":\"10.1016/j.bcp.2024.116555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1), a member of a conserved family of single-stranded RNA-binding proteins (IGF2BP1-3), is expressed in a broad range of fetal tissues, placenta and more than sixteen cancer types but only in a limited number of normal adult tissues. IGF2BP1is required for the transport from nucleus to cytoplasm of certain mRNAs that play essential roles in embryogenesis, carcinogenesis, and multidrug resistance (MDR), by affecting their stability, translation, or localization. The purpose of this review is to gather and present information on MDR mechanisms in cancer and the significance of IGF2BP1 in this context. Within this review, we will provide an overview of IGF2BP1, including its tissue distribution, expression, molecular targets in the context of tumorigenesis and its inhibitors. Our main focus will be on elucidating the interplay between IGF2BP1 and MDR, particularly with regard to chemoresistance mediated by ABC transporters.</div></div>\",\"PeriodicalId\":8806,\"journal\":{\"name\":\"Biochemical pharmacology\",\"volume\":\"230 \",\"pages\":\"Article 116555\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006295224005550\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295224005550","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Role of the RNA binding protein IGF2BP1 in cancer multidrug resistance
The insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1), a member of a conserved family of single-stranded RNA-binding proteins (IGF2BP1-3), is expressed in a broad range of fetal tissues, placenta and more than sixteen cancer types but only in a limited number of normal adult tissues. IGF2BP1is required for the transport from nucleus to cytoplasm of certain mRNAs that play essential roles in embryogenesis, carcinogenesis, and multidrug resistance (MDR), by affecting their stability, translation, or localization. The purpose of this review is to gather and present information on MDR mechanisms in cancer and the significance of IGF2BP1 in this context. Within this review, we will provide an overview of IGF2BP1, including its tissue distribution, expression, molecular targets in the context of tumorigenesis and its inhibitors. Our main focus will be on elucidating the interplay between IGF2BP1 and MDR, particularly with regard to chemoresistance mediated by ABC transporters.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.