关于 Ethan M. Alt、Xiuya Chang、Xun Jiang、Qing Liu、May Mo、H. Amy Xia 和 Joseph G. Ibrahim 所著《LEAP:从历史数据中借用信息的潜在可交换性先验》的讨论。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-01 DOI:10.1093/biomtc/ujae085
Darren Scott, Alex Lewin
{"title":"关于 Ethan M. Alt、Xiuya Chang、Xun Jiang、Qing Liu、May Mo、H. Amy Xia 和 Joseph G. Ibrahim 所著《LEAP:从历史数据中借用信息的潜在可交换性先验》的讨论。","authors":"Darren Scott, Alex Lewin","doi":"10.1093/biomtc/ujae085","DOIUrl":null,"url":null,"abstract":"<p><p>In the following discussion, we describe the various assumptions of exchangeability that have been made in the context of Bayesian borrowing and related models. In this context, we are able to highlight the difficulty of dynamic Bayesian borrowing under the assumption of individuals in the historical data being exchangeable with the current data and thus the strengths and novel features of the latent exchangeability prior. As borrowing methods are popular within clinical trials to augment the control arm, some potential challenges are identified with the application of the approach in this setting.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discussion on \\\"LEAP: the latent exchangeability prior for borrowing information from historical data\\\" by Ethan M. Alt, Xiuya Chang, Xun Jiang, Qing Liu, May Mo, H. Amy Xia, and Joseph G. Ibrahim.\",\"authors\":\"Darren Scott, Alex Lewin\",\"doi\":\"10.1093/biomtc/ujae085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the following discussion, we describe the various assumptions of exchangeability that have been made in the context of Bayesian borrowing and related models. In this context, we are able to highlight the difficulty of dynamic Bayesian borrowing under the assumption of individuals in the historical data being exchangeable with the current data and thus the strengths and novel features of the latent exchangeability prior. As borrowing methods are popular within clinical trials to augment the control arm, some potential challenges are identified with the application of the approach in this setting.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae085\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae085","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在下面的讨论中,我们将介绍在贝叶斯借用和相关模型中对可交换性所做的各种假设。在此背景下,我们能够强调在历史数据中的个体与当前数据可交换的假设下动态贝叶斯借用的困难,从而突出潜在可交换性先验的优势和新特点。由于借用方法在临床试验中常用于增强对照组,因此我们发现了在这种情况下应用该方法可能面临的一些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discussion on "LEAP: the latent exchangeability prior for borrowing information from historical data" by Ethan M. Alt, Xiuya Chang, Xun Jiang, Qing Liu, May Mo, H. Amy Xia, and Joseph G. Ibrahim.

In the following discussion, we describe the various assumptions of exchangeability that have been made in the context of Bayesian borrowing and related models. In this context, we are able to highlight the difficulty of dynamic Bayesian borrowing under the assumption of individuals in the historical data being exchangeable with the current data and thus the strengths and novel features of the latent exchangeability prior. As borrowing methods are popular within clinical trials to augment the control arm, some potential challenges are identified with the application of the approach in this setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1