Fabíola Ayres Cacciatore, Louise Thomé Cardoso, Alina Scherer, Vinícius de Oliveira Jaskulski, Patrícia da Silva Malheiros, Adriano Brandelli
{"title":"添加香芹酚的奇异黏液纳米胶囊作为消毒剂,可控制青菜中的沙门氏菌、大肠杆菌和李斯特菌。","authors":"Fabíola Ayres Cacciatore, Louise Thomé Cardoso, Alina Scherer, Vinícius de Oliveira Jaskulski, Patrícia da Silva Malheiros, Adriano Brandelli","doi":"10.1007/s42770-024-01528-2","DOIUrl":null,"url":null,"abstract":"<p><p>Cabbage is susceptible to various microbiological risks, frequently serving as a vehicle for pathogenic bacteria, mainly Salmonella and Escherichia coli. Therefore, ensuring the safety of this vegetable is essential to reduce the risk of foodborne illnesses. Traditional sanitization using chlorinated water, although effective, raises concerns due to the production of potentially carcinogenic compounds, and this method is banned in some countries. In recent years, alternative sanitizing methods have been developed using essential oils (EOs). However, EOs present high volatility, limited solubility in water, and strong odor and taste. This study introduces an innovative approach to overcome these disadvantages by employing carvacrol encapsulated into chia mucilage nanocapsules (CMNC), prepared through high-energy homogenization. Encapsulating carvacrol in chia mucilage nanocapsules helps to mask its strong sensory characteristics, making it more suitable and acceptable for use in food applications. The antimicrobial efficacy of CMNC (1.67 mg/mL), carvacrol emulsion (CE: 10.6 mg/mL), and chlorine solution (CS: 200 ppm) was evaluated against Salmonella, E. coli, and Listeria monocytogenes. CMNC decreased Salmonella to levels below the detection limit of the technique (< 2 log CFU/g), reduced 3.5 log CFU/g of E. coli, and 2.5 log CFU/g of L. monocytogenes. These results are similar to or better than those obtained with CS. In addition, sanitizing cabbage with CMNC preserved the firmness and color of the samples, important aspects for consumer acceptance. This innovative approach is promising for increasing the food safety of cabbage, while mitigating the potential drawbacks associated with traditional sanitization methods.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carvacrol-loaded chia mucilage nanocapsules as sanitizer to control Salmonella, Escherichia coli and Listeria monocytogenes in green cabbage.\",\"authors\":\"Fabíola Ayres Cacciatore, Louise Thomé Cardoso, Alina Scherer, Vinícius de Oliveira Jaskulski, Patrícia da Silva Malheiros, Adriano Brandelli\",\"doi\":\"10.1007/s42770-024-01528-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cabbage is susceptible to various microbiological risks, frequently serving as a vehicle for pathogenic bacteria, mainly Salmonella and Escherichia coli. Therefore, ensuring the safety of this vegetable is essential to reduce the risk of foodborne illnesses. Traditional sanitization using chlorinated water, although effective, raises concerns due to the production of potentially carcinogenic compounds, and this method is banned in some countries. In recent years, alternative sanitizing methods have been developed using essential oils (EOs). However, EOs present high volatility, limited solubility in water, and strong odor and taste. This study introduces an innovative approach to overcome these disadvantages by employing carvacrol encapsulated into chia mucilage nanocapsules (CMNC), prepared through high-energy homogenization. Encapsulating carvacrol in chia mucilage nanocapsules helps to mask its strong sensory characteristics, making it more suitable and acceptable for use in food applications. The antimicrobial efficacy of CMNC (1.67 mg/mL), carvacrol emulsion (CE: 10.6 mg/mL), and chlorine solution (CS: 200 ppm) was evaluated against Salmonella, E. coli, and Listeria monocytogenes. CMNC decreased Salmonella to levels below the detection limit of the technique (< 2 log CFU/g), reduced 3.5 log CFU/g of E. coli, and 2.5 log CFU/g of L. monocytogenes. These results are similar to or better than those obtained with CS. In addition, sanitizing cabbage with CMNC preserved the firmness and color of the samples, important aspects for consumer acceptance. This innovative approach is promising for increasing the food safety of cabbage, while mitigating the potential drawbacks associated with traditional sanitization methods.</p>\",\"PeriodicalId\":9090,\"journal\":{\"name\":\"Brazilian Journal of Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42770-024-01528-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42770-024-01528-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Carvacrol-loaded chia mucilage nanocapsules as sanitizer to control Salmonella, Escherichia coli and Listeria monocytogenes in green cabbage.
Cabbage is susceptible to various microbiological risks, frequently serving as a vehicle for pathogenic bacteria, mainly Salmonella and Escherichia coli. Therefore, ensuring the safety of this vegetable is essential to reduce the risk of foodborne illnesses. Traditional sanitization using chlorinated water, although effective, raises concerns due to the production of potentially carcinogenic compounds, and this method is banned in some countries. In recent years, alternative sanitizing methods have been developed using essential oils (EOs). However, EOs present high volatility, limited solubility in water, and strong odor and taste. This study introduces an innovative approach to overcome these disadvantages by employing carvacrol encapsulated into chia mucilage nanocapsules (CMNC), prepared through high-energy homogenization. Encapsulating carvacrol in chia mucilage nanocapsules helps to mask its strong sensory characteristics, making it more suitable and acceptable for use in food applications. The antimicrobial efficacy of CMNC (1.67 mg/mL), carvacrol emulsion (CE: 10.6 mg/mL), and chlorine solution (CS: 200 ppm) was evaluated against Salmonella, E. coli, and Listeria monocytogenes. CMNC decreased Salmonella to levels below the detection limit of the technique (< 2 log CFU/g), reduced 3.5 log CFU/g of E. coli, and 2.5 log CFU/g of L. monocytogenes. These results are similar to or better than those obtained with CS. In addition, sanitizing cabbage with CMNC preserved the firmness and color of the samples, important aspects for consumer acceptance. This innovative approach is promising for increasing the food safety of cabbage, while mitigating the potential drawbacks associated with traditional sanitization methods.
期刊介绍:
The Brazilian Journal of Microbiology is an international peer reviewed journal that covers a wide-range of research on fundamental and applied aspects of microbiology.
The journal considers for publication original research articles, short communications, reviews, and letters to the editor, that may be submitted to the following sections: Biotechnology and Industrial Microbiology, Food Microbiology, Bacterial and Fungal Pathogenesis, Clinical Microbiology, Environmental Microbiology, Veterinary Microbiology, Fungal and Bacterial Physiology, Bacterial, Fungal and Virus Molecular Biology, Education in Microbiology. For more details on each section, please check out the instructions for authors.
The journal is the official publication of the Brazilian Society of Microbiology and currently publishes 4 issues per year.