Annexin A1 可保护牙周韧带细胞免受脂多糖诱导的炎症反应和细胞衰老的影响:对牙周炎的影响

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biotechnology and applied biochemistry Pub Date : 2024-09-25 DOI:10.1002/bab.2675
Shuwen Luo, Lin Zhang, Xiaoyu Li, Chunshi Tong
{"title":"Annexin A1 可保护牙周韧带细胞免受脂多糖诱导的炎症反应和细胞衰老的影响:对牙周炎的影响","authors":"Shuwen Luo, Lin Zhang, Xiaoyu Li, Chunshi Tong","doi":"10.1002/bab.2675","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontitis is an inflammatory condition that affects the tooth-supporting structures, triggered by the host's immune response toward the bacterial deposits around the teeth. Annexin A1 (AnxA1), a vital member of the annexin superfamily, is known for its diverse physiological functions, particularly its anti-inflammatory and anti-senescence properties. We hypothesized that AnxA1 has a protective effect against lipopolysaccharide (LPS)-induced inflammatory responses and cellular damage in periodontal ligament cells (PDLCs). In this study, we demonstrate that LPS stimulation significantly reduced telomerase activity in PDLCs, a decline that was dose-dependently reversed by AnxA1. Importantly, AnxA1 protected the cells from LPS-induced cellular senescence and the downregulation of human telomerase reverse transcriptase (hTERT) expression. In line with this, AnxA1 suppressed the LPS-induced expression of p21 and p16 at both the mRNA and protein levels. Furthermore, AnxA1 demonstrated potent anti-inflammatory effects by inhibiting the secretion of interleukin 6 (IL-6), interleukin 8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1). It also mitigated LPS-induced oxidative stress by reducing the levels of phosphorylated Foxo3a (Ser253) and restored sirtuin 1 (SIRT1) expression. Notably, SIRT1 silencing abolished AnxA1's protective effects on Foxo3a phosphorylation and cellular senescence, suggesting that SIRT1 mediates AnxA1's actions. In conclusion, AnxA1 protected PDLCs against LPS-triggered inflammation and cell senescence by activating SIRT1 signal pathway. These findings indicate that AnxA1 could serve as a promising therapeutic strategy for the treatment of periodontitis.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Annexin A1 protects periodontal ligament cells against lipopolysaccharide-induced inflammatory response and cellular senescence: An implication in periodontitis.\",\"authors\":\"Shuwen Luo, Lin Zhang, Xiaoyu Li, Chunshi Tong\",\"doi\":\"10.1002/bab.2675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Periodontitis is an inflammatory condition that affects the tooth-supporting structures, triggered by the host's immune response toward the bacterial deposits around the teeth. Annexin A1 (AnxA1), a vital member of the annexin superfamily, is known for its diverse physiological functions, particularly its anti-inflammatory and anti-senescence properties. We hypothesized that AnxA1 has a protective effect against lipopolysaccharide (LPS)-induced inflammatory responses and cellular damage in periodontal ligament cells (PDLCs). In this study, we demonstrate that LPS stimulation significantly reduced telomerase activity in PDLCs, a decline that was dose-dependently reversed by AnxA1. Importantly, AnxA1 protected the cells from LPS-induced cellular senescence and the downregulation of human telomerase reverse transcriptase (hTERT) expression. In line with this, AnxA1 suppressed the LPS-induced expression of p21 and p16 at both the mRNA and protein levels. Furthermore, AnxA1 demonstrated potent anti-inflammatory effects by inhibiting the secretion of interleukin 6 (IL-6), interleukin 8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1). It also mitigated LPS-induced oxidative stress by reducing the levels of phosphorylated Foxo3a (Ser253) and restored sirtuin 1 (SIRT1) expression. Notably, SIRT1 silencing abolished AnxA1's protective effects on Foxo3a phosphorylation and cellular senescence, suggesting that SIRT1 mediates AnxA1's actions. In conclusion, AnxA1 protected PDLCs against LPS-triggered inflammation and cell senescence by activating SIRT1 signal pathway. These findings indicate that AnxA1 could serve as a promising therapeutic strategy for the treatment of periodontitis.</p>\",\"PeriodicalId\":9274,\"journal\":{\"name\":\"Biotechnology and applied biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and applied biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bab.2675\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2675","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

牙周炎是一种影响牙齿支撑结构的炎症,由宿主对牙齿周围细菌沉积物的免疫反应引发。附件蛋白 A1(Annexin A1)是附件蛋白超家族的一个重要成员,它具有多种生理功能,尤其是抗炎和抗衰老特性。我们假设 AnxA1 对脂多糖(LPS)诱导的牙周韧带细胞(PDLCs)炎症反应和细胞损伤具有保护作用。在这项研究中,我们证明了 LPS 的刺激会显著降低牙周韧带细胞的端粒酶活性,而 AnxA1 则可以剂量依赖性地逆转这种下降。重要的是,AnxA1能保护细胞免受LPS诱导的细胞衰老和人类端粒酶逆转录酶(hTERT)表达的下调。与此相应,AnxA1 在 mRNA 和蛋白质水平上抑制了 LPS 诱导的 p21 和 p16 的表达。此外,AnxA1 还能抑制白细胞介素 6(IL-6)、白细胞介素 8(IL-8)和单核细胞趋化蛋白-1(MCP-1)的分泌,从而显示出强大的抗炎作用。它还通过降低磷酸化 Foxo3a(Ser253)的水平和恢复 sirtuin 1(SIRT1)的表达,减轻了 LPS 诱导的氧化应激。值得注意的是,沉默 SIRT1 可消除 AnxA1 对 Foxo3a 磷酸化和细胞衰老的保护作用,这表明 SIRT1 介导了 AnxA1 的作用。总之,AnxA1通过激活SIRT1信号通路保护PDLCs免受LPS引发的炎症和细胞衰老的影响。这些研究结果表明,AnxA1可作为治疗牙周炎的一种有前途的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Annexin A1 protects periodontal ligament cells against lipopolysaccharide-induced inflammatory response and cellular senescence: An implication in periodontitis.

Periodontitis is an inflammatory condition that affects the tooth-supporting structures, triggered by the host's immune response toward the bacterial deposits around the teeth. Annexin A1 (AnxA1), a vital member of the annexin superfamily, is known for its diverse physiological functions, particularly its anti-inflammatory and anti-senescence properties. We hypothesized that AnxA1 has a protective effect against lipopolysaccharide (LPS)-induced inflammatory responses and cellular damage in periodontal ligament cells (PDLCs). In this study, we demonstrate that LPS stimulation significantly reduced telomerase activity in PDLCs, a decline that was dose-dependently reversed by AnxA1. Importantly, AnxA1 protected the cells from LPS-induced cellular senescence and the downregulation of human telomerase reverse transcriptase (hTERT) expression. In line with this, AnxA1 suppressed the LPS-induced expression of p21 and p16 at both the mRNA and protein levels. Furthermore, AnxA1 demonstrated potent anti-inflammatory effects by inhibiting the secretion of interleukin 6 (IL-6), interleukin 8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1). It also mitigated LPS-induced oxidative stress by reducing the levels of phosphorylated Foxo3a (Ser253) and restored sirtuin 1 (SIRT1) expression. Notably, SIRT1 silencing abolished AnxA1's protective effects on Foxo3a phosphorylation and cellular senescence, suggesting that SIRT1 mediates AnxA1's actions. In conclusion, AnxA1 protected PDLCs against LPS-triggered inflammation and cell senescence by activating SIRT1 signal pathway. These findings indicate that AnxA1 could serve as a promising therapeutic strategy for the treatment of periodontitis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology and applied biochemistry
Biotechnology and applied biochemistry 工程技术-生化与分子生物学
CiteScore
6.00
自引率
7.10%
发文量
117
审稿时长
3 months
期刊介绍: Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation. The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.
期刊最新文献
Deciphering the prognostic landscape of triple-negative breast cancer: A focus on immune-related hub genes and therapeutic implications. Concanavalin A-activated magnetic nanoparticles as an affine material for urinary exosome isolation. The Annexin A1 Protein Mimetic Peptide Ac2-26 prevents cellular senescence of CHON-001 chondrocytes against tumor necrosis factor-α via the Nrf2/NF-κB pathway. Spatio-temporal localization of P21-activated kinase in endometrial cancer. Ameliorative effect of rutecarpine supplementation against cisplatin-induced nephrotoxicity in rats via inhibition of monocyte chemoattractant protein-1, intercellular adhesion molecule-1, high-mobility group box 1, and nuclear factor kappa B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1