通过解剖结构引导的点-体素网络进行稳健平滑的 Couinaud 分割。

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2024-09-27 DOI:10.1016/j.compbiomed.2024.109202
{"title":"通过解剖结构引导的点-体素网络进行稳健平滑的 Couinaud 分割。","authors":"","doi":"10.1016/j.compbiomed.2024.109202","DOIUrl":null,"url":null,"abstract":"<div><div>Precise Couinaud segmentation from preoperative liver computed tomography (CT) is crucial for surgical planning and lesion examination. However, this task is challenging as it is defined based on vessel structures, and there is no intensity contrast between adjacent Couinaud segments in CT images. To solve this challenge, we design a multi-scale point-voxel fusion framework, which can more effectively model the spatial relationship of points and the semantic information of the image, producing robust and smooth Couinaud segmentations. Specifically, we first segment the liver and vessels from the CT image and generate 3D liver point clouds and voxel grids embedded with the vessel structure. Then, our method with two input-specific branches extracts complementary feature representations from points and voxels, respectively. The local attention module adaptively fuses features from the two branches at different scales to balance the contribution of different branches in learning more discriminative features. Furthermore, we propose a novel distance loss at the feature level to make the features in the segment more compact, thereby improving the certainty of segmentation between segments. Our experimental results on three public liver datasets demonstrate that our proposed method outperforms several state-of-the-art methods by large margins. Specifically, in out-of-distribution (OOD) testing of LiTS dataset, our method exceeded the voxel-based 3D UNet by approximately 20% in Dice score, and outperformed the point-based PointNet2Plus by approximately 8% in Dice score. Our code and manual annotations of the public datasets presented in this paper are available online: <span><span>https://github.com/xukun-zhang/Couinaud-Segmentation</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust and smooth Couinaud segmentation via anatomical structure-guided point-voxel network\",\"authors\":\"\",\"doi\":\"10.1016/j.compbiomed.2024.109202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Precise Couinaud segmentation from preoperative liver computed tomography (CT) is crucial for surgical planning and lesion examination. However, this task is challenging as it is defined based on vessel structures, and there is no intensity contrast between adjacent Couinaud segments in CT images. To solve this challenge, we design a multi-scale point-voxel fusion framework, which can more effectively model the spatial relationship of points and the semantic information of the image, producing robust and smooth Couinaud segmentations. Specifically, we first segment the liver and vessels from the CT image and generate 3D liver point clouds and voxel grids embedded with the vessel structure. Then, our method with two input-specific branches extracts complementary feature representations from points and voxels, respectively. The local attention module adaptively fuses features from the two branches at different scales to balance the contribution of different branches in learning more discriminative features. Furthermore, we propose a novel distance loss at the feature level to make the features in the segment more compact, thereby improving the certainty of segmentation between segments. Our experimental results on three public liver datasets demonstrate that our proposed method outperforms several state-of-the-art methods by large margins. Specifically, in out-of-distribution (OOD) testing of LiTS dataset, our method exceeded the voxel-based 3D UNet by approximately 20% in Dice score, and outperformed the point-based PointNet2Plus by approximately 8% in Dice score. Our code and manual annotations of the public datasets presented in this paper are available online: <span><span>https://github.com/xukun-zhang/Couinaud-Segmentation</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482524012873\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524012873","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

从术前肝脏计算机断层扫描(CT)中进行精确的 Couinaud 分割对手术规划和病灶检查至关重要。然而,这项任务具有挑战性,因为它是根据血管结构定义的,而且 CT 图像中相邻 Couinaud 区段之间没有强度对比。为了解决这一难题,我们设计了一个多尺度点-体素融合框架,它能更有效地模拟点的空间关系和图像的语义信息,从而产生稳健、平滑的 Couinaud 分割。具体来说,我们首先从 CT 图像中分割出肝脏和血管,并生成三维肝脏点云和嵌入血管结构的体素网格。然后,我们的方法通过两个输入特定分支,分别从点和体素中提取互补特征表征。局部注意力模块会在不同尺度上自适应地融合来自两个分支的特征,以平衡不同分支在学习更具区分性特征方面的贡献。此外,我们还提出了一种新颖的特征级距离损失,使片段中的特征更加紧凑,从而提高了片段间分割的确定性。我们在三个公共肝脏数据集上的实验结果表明,我们提出的方法在很大程度上优于几种最先进的方法。具体来说,在 LiTS 数据集的分布外(OOD)测试中,我们的方法在 Dice 分数上比基于体素的 3D UNet 高出约 20%,在 Dice 分数上比基于点的 PointNet2Plus 高出约 8%。本文中介绍的公共数据集的代码和手动注释可在线获取:https://github.com/xukun-zhang/Couinaud-Segmentation。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust and smooth Couinaud segmentation via anatomical structure-guided point-voxel network
Precise Couinaud segmentation from preoperative liver computed tomography (CT) is crucial for surgical planning and lesion examination. However, this task is challenging as it is defined based on vessel structures, and there is no intensity contrast between adjacent Couinaud segments in CT images. To solve this challenge, we design a multi-scale point-voxel fusion framework, which can more effectively model the spatial relationship of points and the semantic information of the image, producing robust and smooth Couinaud segmentations. Specifically, we first segment the liver and vessels from the CT image and generate 3D liver point clouds and voxel grids embedded with the vessel structure. Then, our method with two input-specific branches extracts complementary feature representations from points and voxels, respectively. The local attention module adaptively fuses features from the two branches at different scales to balance the contribution of different branches in learning more discriminative features. Furthermore, we propose a novel distance loss at the feature level to make the features in the segment more compact, thereby improving the certainty of segmentation between segments. Our experimental results on three public liver datasets demonstrate that our proposed method outperforms several state-of-the-art methods by large margins. Specifically, in out-of-distribution (OOD) testing of LiTS dataset, our method exceeded the voxel-based 3D UNet by approximately 20% in Dice score, and outperformed the point-based PointNet2Plus by approximately 8% in Dice score. Our code and manual annotations of the public datasets presented in this paper are available online: https://github.com/xukun-zhang/Couinaud-Segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
Lightweight medical image segmentation network with multi-scale feature-guided fusion. Shuffled ECA-Net for stress detection from multimodal wearable sensor data. Stacking based ensemble learning framework for identification of nitrotyrosine sites. Two-stage deep learning framework for occlusal crown depth image generation. A joint analysis proposal of nonlinear longitudinal and time-to-event right-, interval-censored data for modeling pregnancy miscarriage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1