时间几何映射定义了 B 型主动脉夹层演变的形态弹性生长模型。

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2024-09-27 DOI:10.1016/j.compbiomed.2024.109194
{"title":"时间几何映射定义了 B 型主动脉夹层演变的形态弹性生长模型。","authors":"","doi":"10.1016/j.compbiomed.2024.109194","DOIUrl":null,"url":null,"abstract":"<div><div>The human aorta undergoes complex morphologic changes that mirror the evolution of disease. Finite element analysis (FEA) enables the prediction of aortic pathologic states, but the absence of a biomechanical understanding hinders the applicability of this computational tool. We incorporate geometric information from computed tomography angiography (CTA) imaging scans into FEA to predict a trajectory of future geometries for four aortic disease patients. Through defining a geometric correspondence between two patient scans separated in time, a patient-specific FEA model can recreate the deformation of the aorta between the two time points, showing that pathologic growth drives morphologic heterogeneity. FEA-derived trajectories in a shape-size geometric feature space, which plots the variance of the shape index versus the inverse square root of aortic surface area (<span><math><mrow><mi>δ</mi><mi>S</mi></mrow></math></span> vs. <span><math><msup><mrow><msqrt><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow></msqrt></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>), quantitatively demonstrate an increase in <span><math><mrow><mi>δ</mi><mi>S</mi></mrow></math></span>. This represents a deviation from physiologic shape changes and parallels the true geometric progression of aortic disease patients.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal geometric mapping defines morphoelastic growth model of Type B aortic dissection evolution\",\"authors\":\"\",\"doi\":\"10.1016/j.compbiomed.2024.109194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The human aorta undergoes complex morphologic changes that mirror the evolution of disease. Finite element analysis (FEA) enables the prediction of aortic pathologic states, but the absence of a biomechanical understanding hinders the applicability of this computational tool. We incorporate geometric information from computed tomography angiography (CTA) imaging scans into FEA to predict a trajectory of future geometries for four aortic disease patients. Through defining a geometric correspondence between two patient scans separated in time, a patient-specific FEA model can recreate the deformation of the aorta between the two time points, showing that pathologic growth drives morphologic heterogeneity. FEA-derived trajectories in a shape-size geometric feature space, which plots the variance of the shape index versus the inverse square root of aortic surface area (<span><math><mrow><mi>δ</mi><mi>S</mi></mrow></math></span> vs. <span><math><msup><mrow><msqrt><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow></msqrt></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>), quantitatively demonstrate an increase in <span><math><mrow><mi>δ</mi><mi>S</mi></mrow></math></span>. This represents a deviation from physiologic shape changes and parallels the true geometric progression of aortic disease patients.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482524012794\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524012794","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人体主动脉会发生复杂的形态变化,这些变化反映了疾病的演变过程。有限元分析(FEA)可以预测主动脉的病理状态,但由于缺乏对生物力学的了解,这种计算工具的适用性受到了阻碍。我们将计算机断层扫描(CTA)成像扫描的几何信息纳入有限元分析,预测四名主动脉疾病患者未来的几何轨迹。通过定义时间上相隔的两个患者扫描之间的几何对应关系,患者特定的有限元分析模型可以重现两个时间点之间的主动脉变形,显示病理生长驱动了形态异质性。形状大小几何特征空间中的有限元分析衍生轨迹绘制了形状指数方差与主动脉表面积反平方根的关系(δS vs. [公式:见正文]),定量显示了δS的增加。这表明主动脉形状偏离了生理变化,与主动脉疾病患者的真实几何进展相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temporal geometric mapping defines morphoelastic growth model of Type B aortic dissection evolution
The human aorta undergoes complex morphologic changes that mirror the evolution of disease. Finite element analysis (FEA) enables the prediction of aortic pathologic states, but the absence of a biomechanical understanding hinders the applicability of this computational tool. We incorporate geometric information from computed tomography angiography (CTA) imaging scans into FEA to predict a trajectory of future geometries for four aortic disease patients. Through defining a geometric correspondence between two patient scans separated in time, a patient-specific FEA model can recreate the deformation of the aorta between the two time points, showing that pathologic growth drives morphologic heterogeneity. FEA-derived trajectories in a shape-size geometric feature space, which plots the variance of the shape index versus the inverse square root of aortic surface area (δS vs. AT1), quantitatively demonstrate an increase in δS. This represents a deviation from physiologic shape changes and parallels the true geometric progression of aortic disease patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
Lightweight medical image segmentation network with multi-scale feature-guided fusion. Shuffled ECA-Net for stress detection from multimodal wearable sensor data. Stacking based ensemble learning framework for identification of nitrotyrosine sites. Two-stage deep learning framework for occlusal crown depth image generation. A joint analysis proposal of nonlinear longitudinal and time-to-event right-, interval-censored data for modeling pregnancy miscarriage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1