Ana Luísa Rodriguez Gini, Emilio Emilio João, Juliana Romano Lopes, Pamela Souza Tada Da Cunha, Angela Maria Arenas Velásquez, Marcia Aparecida Silva Graminha, Jean Leandro Dos Santos, Cauê Benito Scarim
{"title":"治疗利什曼病的半胱氨酸蛋白酶 B 抑制剂的研究进展。","authors":"Ana Luísa Rodriguez Gini, Emilio Emilio João, Juliana Romano Lopes, Pamela Souza Tada Da Cunha, Angela Maria Arenas Velásquez, Marcia Aparecida Silva Graminha, Jean Leandro Dos Santos, Cauê Benito Scarim","doi":"10.2174/0113894501324437240919064715","DOIUrl":null,"url":null,"abstract":"<p><p>The expression and release of cysteine proteases by Leishmania spp. and their virulence factors significantly influence the modulation of host immune responses and metabolism, rendering cysteine proteases intriguing targets for drug development. This review article explores the substantial role of cysteine protease B (CPB) in medicinal chemistry from 2001 to 2024, particularly concerning combatting Leishmania parasites. We delve into contemporary advancements and potential prospects associated with targeting cysteine proteases for therapeutic interventions against leishmaniasis, emphasizing drug discovery in this context. Computational analysis using the pkCSM tool assessed the physicochemical properties of compounds, providing valuable insights into their molecular characteristics and drug-like potential, enriching our understanding of the pharmacological profiles, and aiding rational inhibitor design. Our investigation highlights that while nonpeptidic compounds constitute the majority (69.2%, 36 compounds) of the dataset, peptidomimetic- based derivatives (30.8%, 16 compounds) also hold promise in medicinal chemistry. Evaluating the most promising compounds based on dissociation constant (Ki) and half maximal inhibitory concentration (IC50) values revealed notable potency, with 41.7% and 80.0% of nonpeptidic compounds exhibiting values < 1 μM, respectively. On the other hand, all peptidic compounds evaluated for Ki (43.8%) and IC50 (31.3%) obtained values < 1 μM, respectively. Further analysis identified specific compounds within both categories (nonpeptidic: 1, 2, and 4; peptidic: 48-52) as particularly promising, warranting deeper investigation into their structure-activity relationships. These findings underscore the diverse landscape of inhibitors in medicinal chemistry and highlight the potential of both nonpeptidic and peptide-based compounds as valuable assets in therapeutic development against leishmaniasis.</p>","PeriodicalId":10805,"journal":{"name":"Current drug targets","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Cysteine Protease B Inhibitors for Leishmaniasis Treatment.\",\"authors\":\"Ana Luísa Rodriguez Gini, Emilio Emilio João, Juliana Romano Lopes, Pamela Souza Tada Da Cunha, Angela Maria Arenas Velásquez, Marcia Aparecida Silva Graminha, Jean Leandro Dos Santos, Cauê Benito Scarim\",\"doi\":\"10.2174/0113894501324437240919064715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The expression and release of cysteine proteases by Leishmania spp. and their virulence factors significantly influence the modulation of host immune responses and metabolism, rendering cysteine proteases intriguing targets for drug development. This review article explores the substantial role of cysteine protease B (CPB) in medicinal chemistry from 2001 to 2024, particularly concerning combatting Leishmania parasites. We delve into contemporary advancements and potential prospects associated with targeting cysteine proteases for therapeutic interventions against leishmaniasis, emphasizing drug discovery in this context. Computational analysis using the pkCSM tool assessed the physicochemical properties of compounds, providing valuable insights into their molecular characteristics and drug-like potential, enriching our understanding of the pharmacological profiles, and aiding rational inhibitor design. Our investigation highlights that while nonpeptidic compounds constitute the majority (69.2%, 36 compounds) of the dataset, peptidomimetic- based derivatives (30.8%, 16 compounds) also hold promise in medicinal chemistry. Evaluating the most promising compounds based on dissociation constant (Ki) and half maximal inhibitory concentration (IC50) values revealed notable potency, with 41.7% and 80.0% of nonpeptidic compounds exhibiting values < 1 μM, respectively. On the other hand, all peptidic compounds evaluated for Ki (43.8%) and IC50 (31.3%) obtained values < 1 μM, respectively. Further analysis identified specific compounds within both categories (nonpeptidic: 1, 2, and 4; peptidic: 48-52) as particularly promising, warranting deeper investigation into their structure-activity relationships. These findings underscore the diverse landscape of inhibitors in medicinal chemistry and highlight the potential of both nonpeptidic and peptide-based compounds as valuable assets in therapeutic development against leishmaniasis.</p>\",\"PeriodicalId\":10805,\"journal\":{\"name\":\"Current drug targets\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug targets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113894501324437240919064715\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113894501324437240919064715","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Advances in Cysteine Protease B Inhibitors for Leishmaniasis Treatment.
The expression and release of cysteine proteases by Leishmania spp. and their virulence factors significantly influence the modulation of host immune responses and metabolism, rendering cysteine proteases intriguing targets for drug development. This review article explores the substantial role of cysteine protease B (CPB) in medicinal chemistry from 2001 to 2024, particularly concerning combatting Leishmania parasites. We delve into contemporary advancements and potential prospects associated with targeting cysteine proteases for therapeutic interventions against leishmaniasis, emphasizing drug discovery in this context. Computational analysis using the pkCSM tool assessed the physicochemical properties of compounds, providing valuable insights into their molecular characteristics and drug-like potential, enriching our understanding of the pharmacological profiles, and aiding rational inhibitor design. Our investigation highlights that while nonpeptidic compounds constitute the majority (69.2%, 36 compounds) of the dataset, peptidomimetic- based derivatives (30.8%, 16 compounds) also hold promise in medicinal chemistry. Evaluating the most promising compounds based on dissociation constant (Ki) and half maximal inhibitory concentration (IC50) values revealed notable potency, with 41.7% and 80.0% of nonpeptidic compounds exhibiting values < 1 μM, respectively. On the other hand, all peptidic compounds evaluated for Ki (43.8%) and IC50 (31.3%) obtained values < 1 μM, respectively. Further analysis identified specific compounds within both categories (nonpeptidic: 1, 2, and 4; peptidic: 48-52) as particularly promising, warranting deeper investigation into their structure-activity relationships. These findings underscore the diverse landscape of inhibitors in medicinal chemistry and highlight the potential of both nonpeptidic and peptide-based compounds as valuable assets in therapeutic development against leishmaniasis.
期刊介绍:
Current Drug Targets aims to cover the latest and most outstanding developments on the medicinal chemistry and pharmacology of molecular drug targets e.g. disease specific proteins, receptors, enzymes, genes.
Current Drug Targets publishes guest edited thematic issues written by leaders in the field covering a range of current topics of drug targets. The journal also accepts for publication mini- & full-length review articles and drug clinical trial studies.
As the discovery, identification, characterization and validation of novel human drug targets for drug discovery continues to grow; this journal is essential reading for all pharmaceutical scientists involved in drug discovery and development.