Duygu Burcu Arda, Kerem Can Tunç, Mehmet Fatih Bozkurt, Ejder Saylav Bora, Ayşe Çiğel, Oytun Erbaş
{"title":"鼻内胰岛素通过 GDF-15 和抗炎途径缓解大鼠自闭症症状","authors":"Duygu Burcu Arda, Kerem Can Tunç, Mehmet Fatih Bozkurt, Ejder Saylav Bora, Ayşe Çiğel, Oytun Erbaş","doi":"10.3390/cimb46090624","DOIUrl":null,"url":null,"abstract":"<p><p>In rat models, it is well-documented that chronic administration of propionic acid (PPA) leads to autism-like behaviors. Although the intranasal (IN) insulin approach is predominantly recognized for its effects on food restriction, it has also been shown to enhance cognitive memory by influencing various proteins, modulating anti-inflammatory pathways in the brain, and reducing signaling molecules such as interleukins. This study seeks to explore the potential therapeutic benefits of IN insulin in a rat model of autism induced by PPA. Thirty male Wistar albino rats were categorized into three cohorts: the control group, the PPA-induced autism (250 mg/kg/day intraperitoneal PPA dosage for five days) group, treated with saline via IN, and the PPA-induced autism group, treated with 25 U/kg/day (250 µL/kg/day) insulin via IN. All treatments were administered for 15 days. After behavioral testing, all animals were euthanized, and brain tissue and blood samples were collected for histopathological and biochemical assessments. Following insulin administration, a substantial reduction in autism symptoms was observed in all three social behavior tests conducted on the rats. Moreover, insulin exhibited noteworthy capabilities in decreasing brain MDA, IL-2, IL-17, and TNF-α levels within autism models. Additionally, there is a notable elevation in the brain nerve growth factor level (<i>p</i> < 0.05) and GDF-15 (<i>p</i> < 0.05). The assessment of cell counts within the hippocampal region and cerebellum revealed that insulin displayed effects in decreasing glial cells and inducing a significant augmentation in cell types such as the Purkinje and Pyramidal cells. The administration of insulin via IN exhibits alleviating effects on autism-like behavioral, biochemical, and histopathological alterations induced by PPA in rats. Insulin-dependent protective effects show anti-inflammatory, anti-oxidative, and neuroprotective roles of insulin admitted nasally.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431515/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intranasal Insulin Eases Autism in Rats via GDF-15 and Anti-Inflammatory Pathways.\",\"authors\":\"Duygu Burcu Arda, Kerem Can Tunç, Mehmet Fatih Bozkurt, Ejder Saylav Bora, Ayşe Çiğel, Oytun Erbaş\",\"doi\":\"10.3390/cimb46090624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In rat models, it is well-documented that chronic administration of propionic acid (PPA) leads to autism-like behaviors. Although the intranasal (IN) insulin approach is predominantly recognized for its effects on food restriction, it has also been shown to enhance cognitive memory by influencing various proteins, modulating anti-inflammatory pathways in the brain, and reducing signaling molecules such as interleukins. This study seeks to explore the potential therapeutic benefits of IN insulin in a rat model of autism induced by PPA. Thirty male Wistar albino rats were categorized into three cohorts: the control group, the PPA-induced autism (250 mg/kg/day intraperitoneal PPA dosage for five days) group, treated with saline via IN, and the PPA-induced autism group, treated with 25 U/kg/day (250 µL/kg/day) insulin via IN. All treatments were administered for 15 days. After behavioral testing, all animals were euthanized, and brain tissue and blood samples were collected for histopathological and biochemical assessments. Following insulin administration, a substantial reduction in autism symptoms was observed in all three social behavior tests conducted on the rats. Moreover, insulin exhibited noteworthy capabilities in decreasing brain MDA, IL-2, IL-17, and TNF-α levels within autism models. Additionally, there is a notable elevation in the brain nerve growth factor level (<i>p</i> < 0.05) and GDF-15 (<i>p</i> < 0.05). The assessment of cell counts within the hippocampal region and cerebellum revealed that insulin displayed effects in decreasing glial cells and inducing a significant augmentation in cell types such as the Purkinje and Pyramidal cells. The administration of insulin via IN exhibits alleviating effects on autism-like behavioral, biochemical, and histopathological alterations induced by PPA in rats. Insulin-dependent protective effects show anti-inflammatory, anti-oxidative, and neuroprotective roles of insulin admitted nasally.</p>\",\"PeriodicalId\":10839,\"journal\":{\"name\":\"Current Issues in Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431515/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Issues in Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cimb46090624\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb46090624","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Intranasal Insulin Eases Autism in Rats via GDF-15 and Anti-Inflammatory Pathways.
In rat models, it is well-documented that chronic administration of propionic acid (PPA) leads to autism-like behaviors. Although the intranasal (IN) insulin approach is predominantly recognized for its effects on food restriction, it has also been shown to enhance cognitive memory by influencing various proteins, modulating anti-inflammatory pathways in the brain, and reducing signaling molecules such as interleukins. This study seeks to explore the potential therapeutic benefits of IN insulin in a rat model of autism induced by PPA. Thirty male Wistar albino rats were categorized into three cohorts: the control group, the PPA-induced autism (250 mg/kg/day intraperitoneal PPA dosage for five days) group, treated with saline via IN, and the PPA-induced autism group, treated with 25 U/kg/day (250 µL/kg/day) insulin via IN. All treatments were administered for 15 days. After behavioral testing, all animals were euthanized, and brain tissue and blood samples were collected for histopathological and biochemical assessments. Following insulin administration, a substantial reduction in autism symptoms was observed in all three social behavior tests conducted on the rats. Moreover, insulin exhibited noteworthy capabilities in decreasing brain MDA, IL-2, IL-17, and TNF-α levels within autism models. Additionally, there is a notable elevation in the brain nerve growth factor level (p < 0.05) and GDF-15 (p < 0.05). The assessment of cell counts within the hippocampal region and cerebellum revealed that insulin displayed effects in decreasing glial cells and inducing a significant augmentation in cell types such as the Purkinje and Pyramidal cells. The administration of insulin via IN exhibits alleviating effects on autism-like behavioral, biochemical, and histopathological alterations induced by PPA in rats. Insulin-dependent protective effects show anti-inflammatory, anti-oxidative, and neuroprotective roles of insulin admitted nasally.
期刊介绍:
Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.