慢性心力衰竭的演变:不同的命运和路线

IF 3.2 2区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS ESC Heart Failure Pub Date : 2024-09-24 DOI:10.1002/ehf2.14966
Piergiuseppe Agostoni, Mattia Chiesa, Elisabetta Salvioni, Michele Emdin, Massimo Piepoli, Gianfranco Sinagra, Michele Senni, Alice Bonomi, Stamatis Adamopoulos, Dimitris Miliopoulos, Massimo Mapelli, Jeness Campodonico, Umberto Attanasio, Anna Apostolo, Emanuele Pestrin, Agostino Rossoni, Damiano Magrì, Stefania Paolillo, Ugo Corrà, Rosa Raimondo, Antonio Cittadini, Annamaria Iorio, Andrea Salzano, Rocco Lagioia, Carlo Vignati, Roberto Badagliacca, Pasquale Perrone Filardi, Michele Correale, Enrico Perna, Marco Metra, Gaia Cattadori, Marco Guazzi, Giuseppe Limongelli, Gianfranco Parati, Fabiana De Martino, Maria Vittoria Matassini, Francesco Bandera, Maurizio Bussotti, Federica Re, Carlo M Lombardi, Angela B Scardovi, Susanna Sciomer, Andrea Passantino, Caterina Santolamazza, Davide Girola, Claudio Passino, Marlus Karsten, Savina Nodari, Giulio Pompilio
{"title":"慢性心力衰竭的演变:不同的命运和路线","authors":"Piergiuseppe Agostoni, Mattia Chiesa, Elisabetta Salvioni, Michele Emdin, Massimo Piepoli, Gianfranco Sinagra, Michele Senni, Alice Bonomi, Stamatis Adamopoulos, Dimitris Miliopoulos, Massimo Mapelli, Jeness Campodonico, Umberto Attanasio, Anna Apostolo, Emanuele Pestrin, Agostino Rossoni, Damiano Magrì, Stefania Paolillo, Ugo Corrà, Rosa Raimondo, Antonio Cittadini, Annamaria Iorio, Andrea Salzano, Rocco Lagioia, Carlo Vignati, Roberto Badagliacca, Pasquale Perrone Filardi, Michele Correale, Enrico Perna, Marco Metra, Gaia Cattadori, Marco Guazzi, Giuseppe Limongelli, Gianfranco Parati, Fabiana De Martino, Maria Vittoria Matassini, Francesco Bandera, Maurizio Bussotti, Federica Re, Carlo M Lombardi, Angela B Scardovi, Susanna Sciomer, Andrea Passantino, Caterina Santolamazza, Davide Girola, Claudio Passino, Marlus Karsten, Savina Nodari, Giulio Pompilio","doi":"10.1002/ehf2.14966","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Individual prognostic assessment and disease evolution pathways are undefined in chronic heart failure (HF). The application of unsupervised learning methodologies could help to identify patient phenotypes and the progression in each phenotype as well as to assess adverse event risk.</p><p><strong>Methods and results: </strong>From a bulk of 7948 HF patients included in the MECKI registry, we selected patients with a minimum 2-year follow-up. We implemented a topological data analysis (TDA), based on 43 variables derived from clinical, biochemical, cardiac ultrasound, and exercise evaluations, to identify several patients' clusters. Thereafter, we used the trajectory analysis to describe the evolution of HF states, which is able to identify bifurcation points, characterized by different follow-up paths, as well as specific end-stages conditions of the disease. Finally, we conducted a 5-year survival analysis (composite of cardiovascular death, left ventricular assist device, or urgent heart transplant). Findings were validated on internal (n = 527) and external (n = 777) populations. We analyzed 4876 patients (age = 63 [53-71], male gender n = 3973 (81.5%), NYHA class I-II n = 3576 (73.3%), III-IV n = 1300 (26.7%), LVEF = 33 [25.5-39.9], atrial fibrillation n = 791 (16.2%), peak VO<sub>2</sub>% pred = 54.8 [43.8-67.2]), with a minimum 2-year follow-up. Nineteen patient clusters were identified by TDA. Trajectory analysis revealed a path characterized by 3 bifurcation and 4 end-stage points. Clusters survival rate varied from 44% to 100% at 2 years and from 20% to 100% at 5 years, respectively. The event frequency at 5-year follow-up for each study cohort cluster was successfully compared with those in the validation cohorts (R = 0.94 and R = 0.84, P < 0.001, for internal and external cohort, respectively). Finally, we conducted a 5-year survival analysis (composite of cardiovascular death, left ventricular assist device, or urgent heart transplant observed in 22% of cases).</p><p><strong>Conclusions: </strong>Each HF phenotype has a specific disease progression and prognosis. These findings allow to individualize HF patient evolutions and to tailor assessment.</p>","PeriodicalId":11864,"journal":{"name":"ESC Heart Failure","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The chronic heart failure evolutions: Different fates and routes.\",\"authors\":\"Piergiuseppe Agostoni, Mattia Chiesa, Elisabetta Salvioni, Michele Emdin, Massimo Piepoli, Gianfranco Sinagra, Michele Senni, Alice Bonomi, Stamatis Adamopoulos, Dimitris Miliopoulos, Massimo Mapelli, Jeness Campodonico, Umberto Attanasio, Anna Apostolo, Emanuele Pestrin, Agostino Rossoni, Damiano Magrì, Stefania Paolillo, Ugo Corrà, Rosa Raimondo, Antonio Cittadini, Annamaria Iorio, Andrea Salzano, Rocco Lagioia, Carlo Vignati, Roberto Badagliacca, Pasquale Perrone Filardi, Michele Correale, Enrico Perna, Marco Metra, Gaia Cattadori, Marco Guazzi, Giuseppe Limongelli, Gianfranco Parati, Fabiana De Martino, Maria Vittoria Matassini, Francesco Bandera, Maurizio Bussotti, Federica Re, Carlo M Lombardi, Angela B Scardovi, Susanna Sciomer, Andrea Passantino, Caterina Santolamazza, Davide Girola, Claudio Passino, Marlus Karsten, Savina Nodari, Giulio Pompilio\",\"doi\":\"10.1002/ehf2.14966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Individual prognostic assessment and disease evolution pathways are undefined in chronic heart failure (HF). The application of unsupervised learning methodologies could help to identify patient phenotypes and the progression in each phenotype as well as to assess adverse event risk.</p><p><strong>Methods and results: </strong>From a bulk of 7948 HF patients included in the MECKI registry, we selected patients with a minimum 2-year follow-up. We implemented a topological data analysis (TDA), based on 43 variables derived from clinical, biochemical, cardiac ultrasound, and exercise evaluations, to identify several patients' clusters. Thereafter, we used the trajectory analysis to describe the evolution of HF states, which is able to identify bifurcation points, characterized by different follow-up paths, as well as specific end-stages conditions of the disease. Finally, we conducted a 5-year survival analysis (composite of cardiovascular death, left ventricular assist device, or urgent heart transplant). Findings were validated on internal (n = 527) and external (n = 777) populations. We analyzed 4876 patients (age = 63 [53-71], male gender n = 3973 (81.5%), NYHA class I-II n = 3576 (73.3%), III-IV n = 1300 (26.7%), LVEF = 33 [25.5-39.9], atrial fibrillation n = 791 (16.2%), peak VO<sub>2</sub>% pred = 54.8 [43.8-67.2]), with a minimum 2-year follow-up. Nineteen patient clusters were identified by TDA. Trajectory analysis revealed a path characterized by 3 bifurcation and 4 end-stage points. Clusters survival rate varied from 44% to 100% at 2 years and from 20% to 100% at 5 years, respectively. The event frequency at 5-year follow-up for each study cohort cluster was successfully compared with those in the validation cohorts (R = 0.94 and R = 0.84, P < 0.001, for internal and external cohort, respectively). Finally, we conducted a 5-year survival analysis (composite of cardiovascular death, left ventricular assist device, or urgent heart transplant observed in 22% of cases).</p><p><strong>Conclusions: </strong>Each HF phenotype has a specific disease progression and prognosis. These findings allow to individualize HF patient evolutions and to tailor assessment.</p>\",\"PeriodicalId\":11864,\"journal\":{\"name\":\"ESC Heart Failure\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESC Heart Failure\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ehf2.14966\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESC Heart Failure","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ehf2.14966","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:慢性心力衰竭(HF)的个体预后评估和疾病演变途径尚未明确。应用无监督学习方法有助于确定患者表型和每种表型的进展情况,以及评估不良事件风险:我们从 MECKI 登记的 7948 名高血压患者中挑选了至少随访 2 年的患者。我们根据从临床、生化、心脏超声和运动评估中得出的 43 个变量进行了拓扑数据分析(TDA),以确定几个患者群。之后,我们使用轨迹分析来描述高频状态的演变,从而识别出以不同随访路径为特征的分叉点,以及疾病的特定终末期状况。最后,我们还进行了 5 年生存分析(心血管死亡、左心室辅助装置或紧急心脏移植的复合分析)。研究结果在内部(527 人)和外部(777 人)人群中进行了验证。我们分析了 4876 名患者(年龄 = 63 [53-71],男性 n = 3973 (81.5%),NYHA I-II 级 n = 3576 (73.3%),III-IV 级 n = 1300 (26.7%),LVEF = 33 [25.5-39.9],心房颤动 n = 791 (16.2%),峰值 VO2% pred = 54.8 [43.8-67.2]),随访时间至少 2 年。通过 TDA 确定了 19 个患者群。轨迹分析显示了一条以 3 个分叉点和 4 个终末点为特征的路径。群组的存活率分别为 2 年 44% 至 100%,5 年 20% 至 100%。各研究群组随访 5 年的事件频率与验证群组的事件频率进行了成功的比较(R = 0.94 和 R = 0.84,P 结论):每种心房颤动表型都有特定的疾病进展和预后。这些发现有助于对心房颤动患者的病情发展进行个体化分析和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The chronic heart failure evolutions: Different fates and routes.

Aims: Individual prognostic assessment and disease evolution pathways are undefined in chronic heart failure (HF). The application of unsupervised learning methodologies could help to identify patient phenotypes and the progression in each phenotype as well as to assess adverse event risk.

Methods and results: From a bulk of 7948 HF patients included in the MECKI registry, we selected patients with a minimum 2-year follow-up. We implemented a topological data analysis (TDA), based on 43 variables derived from clinical, biochemical, cardiac ultrasound, and exercise evaluations, to identify several patients' clusters. Thereafter, we used the trajectory analysis to describe the evolution of HF states, which is able to identify bifurcation points, characterized by different follow-up paths, as well as specific end-stages conditions of the disease. Finally, we conducted a 5-year survival analysis (composite of cardiovascular death, left ventricular assist device, or urgent heart transplant). Findings were validated on internal (n = 527) and external (n = 777) populations. We analyzed 4876 patients (age = 63 [53-71], male gender n = 3973 (81.5%), NYHA class I-II n = 3576 (73.3%), III-IV n = 1300 (26.7%), LVEF = 33 [25.5-39.9], atrial fibrillation n = 791 (16.2%), peak VO2% pred = 54.8 [43.8-67.2]), with a minimum 2-year follow-up. Nineteen patient clusters were identified by TDA. Trajectory analysis revealed a path characterized by 3 bifurcation and 4 end-stage points. Clusters survival rate varied from 44% to 100% at 2 years and from 20% to 100% at 5 years, respectively. The event frequency at 5-year follow-up for each study cohort cluster was successfully compared with those in the validation cohorts (R = 0.94 and R = 0.84, P < 0.001, for internal and external cohort, respectively). Finally, we conducted a 5-year survival analysis (composite of cardiovascular death, left ventricular assist device, or urgent heart transplant observed in 22% of cases).

Conclusions: Each HF phenotype has a specific disease progression and prognosis. These findings allow to individualize HF patient evolutions and to tailor assessment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ESC Heart Failure
ESC Heart Failure Medicine-Cardiology and Cardiovascular Medicine
CiteScore
7.00
自引率
7.90%
发文量
461
审稿时长
12 weeks
期刊介绍: ESC Heart Failure is the open access journal of the Heart Failure Association of the European Society of Cardiology dedicated to the advancement of knowledge in the field of heart failure. The journal aims to improve the understanding, prevention, investigation and treatment of heart failure. Molecular and cellular biology, pathology, physiology, electrophysiology, pharmacology, as well as the clinical, social and population sciences all form part of the discipline that is heart failure. Accordingly, submission of manuscripts on basic, translational, clinical and population sciences is invited. Original contributions on nursing, care of the elderly, primary care, health economics and other specialist fields related to heart failure are also welcome, as are case reports that highlight interesting aspects of heart failure care and treatment.
期刊最新文献
Analysis of the usefulness and benefits of ultrafiltration in cardiorenal syndrome: A systematic review. Two causes of COVID-19-related myocardial injury-associated cardiogenic shock: Myocarditis and microvascular thrombosis. Trametinib alters contractility of paediatric Noonan syndrome-associated hypertrophic myocardial tissue slices. Effects of sodium-glucose co-transporter inhibitors on individual clinical endpoints and quality of life. Machine learning-based prediction of elevated N terminal pro brain natriuretic peptide among US general population.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1