Tingting Fan, Ningjun Zhu, Mengli Li, Zhen Wang, Xianhe Lin
{"title":"CTRP6通过AMPK/SIRT1/PGC-1α信号通路介导心衰患者的心脏保护","authors":"Tingting Fan, Ningjun Zhu, Mengli Li, Zhen Wang, Xianhe Lin","doi":"10.1113/EP092036","DOIUrl":null,"url":null,"abstract":"<p><p>Heart failure (HF) remains a significant global health concern with limited effective treatments available. C1q/TNF-related protein 6 (CTRP6) is a member of the CTRP family analogous to adiponectin and its role in HF pathogenesis remains unclear. Here, we investigated the impact of CTRP6 on HF progression. To mimic heart failure with reduced ejection fraction (HFrEF), we used isoproterenol injection in mice and administered adenovirus vectors expressing CTRP6 (Ad-CTRP6) via tail vein injection. We assessed cardiac function through echocardiography and histology. CTRP6's effects on hypertrophy, fibrosis, apoptosis, oxidative stress and mitochondrial function were analysed. Downstream pathways (phosphorylated AMP-activated protein kinase (p-AMPK), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) were studied in heart tissues. In vitro, isoproterenol-stimulated H9c2 cardiomyocytes were treated with CTRP6 to examine viability, apoptosis, F-actin and signalling proteins. Compound C was used to assess AMPK involvement. CTRP6 expression was lower in the plasma of HF patients. In an isoproterenol-induced HFrEF mouse model, adenovirus-mediated overexpression of CTRP6 ameliorated cardiac dysfunction and reduced cardiomyocyte apoptosis, oxidative stress, inflammation and myocardial injury markers. Mechanistically, CTRP6 activation of the AMPK/SIRT1/PGC-1α signalling pathway restored mitochondrial homeostasis, evidenced by reduced mitochondrial reactive oxygen species levels, increased ATP content, and enhanced mitochondrial complex I/III activities in cardiac tissues. In vitro studies using isoproterenol-stimulated H9c2 cardiomyocytes corroborated these findings, demonstrating that CTRP6 upregulation attenuated hypertrophy, apoptosis, oxidative stress and mitochondrial dysfunction. Furthermore, these effects were partially reversed by the AMPK inhibitor Compound C, implicating the involvement of the AMPK pathway in CTRP6-mediated cardioprotection. CTRP6 alleviates HF progression through the AMPK/SIRT1/PGC-1α signalling pathway.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CTRP6-mediated cardiac protection in heart failure via the AMPK/SIRT1/PGC-1α signalling pathway.\",\"authors\":\"Tingting Fan, Ningjun Zhu, Mengli Li, Zhen Wang, Xianhe Lin\",\"doi\":\"10.1113/EP092036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heart failure (HF) remains a significant global health concern with limited effective treatments available. C1q/TNF-related protein 6 (CTRP6) is a member of the CTRP family analogous to adiponectin and its role in HF pathogenesis remains unclear. Here, we investigated the impact of CTRP6 on HF progression. To mimic heart failure with reduced ejection fraction (HFrEF), we used isoproterenol injection in mice and administered adenovirus vectors expressing CTRP6 (Ad-CTRP6) via tail vein injection. We assessed cardiac function through echocardiography and histology. CTRP6's effects on hypertrophy, fibrosis, apoptosis, oxidative stress and mitochondrial function were analysed. Downstream pathways (phosphorylated AMP-activated protein kinase (p-AMPK), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) were studied in heart tissues. In vitro, isoproterenol-stimulated H9c2 cardiomyocytes were treated with CTRP6 to examine viability, apoptosis, F-actin and signalling proteins. Compound C was used to assess AMPK involvement. CTRP6 expression was lower in the plasma of HF patients. In an isoproterenol-induced HFrEF mouse model, adenovirus-mediated overexpression of CTRP6 ameliorated cardiac dysfunction and reduced cardiomyocyte apoptosis, oxidative stress, inflammation and myocardial injury markers. Mechanistically, CTRP6 activation of the AMPK/SIRT1/PGC-1α signalling pathway restored mitochondrial homeostasis, evidenced by reduced mitochondrial reactive oxygen species levels, increased ATP content, and enhanced mitochondrial complex I/III activities in cardiac tissues. In vitro studies using isoproterenol-stimulated H9c2 cardiomyocytes corroborated these findings, demonstrating that CTRP6 upregulation attenuated hypertrophy, apoptosis, oxidative stress and mitochondrial dysfunction. Furthermore, these effects were partially reversed by the AMPK inhibitor Compound C, implicating the involvement of the AMPK pathway in CTRP6-mediated cardioprotection. CTRP6 alleviates HF progression through the AMPK/SIRT1/PGC-1α signalling pathway.</p>\",\"PeriodicalId\":12092,\"journal\":{\"name\":\"Experimental Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/EP092036\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP092036","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
CTRP6-mediated cardiac protection in heart failure via the AMPK/SIRT1/PGC-1α signalling pathway.
Heart failure (HF) remains a significant global health concern with limited effective treatments available. C1q/TNF-related protein 6 (CTRP6) is a member of the CTRP family analogous to adiponectin and its role in HF pathogenesis remains unclear. Here, we investigated the impact of CTRP6 on HF progression. To mimic heart failure with reduced ejection fraction (HFrEF), we used isoproterenol injection in mice and administered adenovirus vectors expressing CTRP6 (Ad-CTRP6) via tail vein injection. We assessed cardiac function through echocardiography and histology. CTRP6's effects on hypertrophy, fibrosis, apoptosis, oxidative stress and mitochondrial function were analysed. Downstream pathways (phosphorylated AMP-activated protein kinase (p-AMPK), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) were studied in heart tissues. In vitro, isoproterenol-stimulated H9c2 cardiomyocytes were treated with CTRP6 to examine viability, apoptosis, F-actin and signalling proteins. Compound C was used to assess AMPK involvement. CTRP6 expression was lower in the plasma of HF patients. In an isoproterenol-induced HFrEF mouse model, adenovirus-mediated overexpression of CTRP6 ameliorated cardiac dysfunction and reduced cardiomyocyte apoptosis, oxidative stress, inflammation and myocardial injury markers. Mechanistically, CTRP6 activation of the AMPK/SIRT1/PGC-1α signalling pathway restored mitochondrial homeostasis, evidenced by reduced mitochondrial reactive oxygen species levels, increased ATP content, and enhanced mitochondrial complex I/III activities in cardiac tissues. In vitro studies using isoproterenol-stimulated H9c2 cardiomyocytes corroborated these findings, demonstrating that CTRP6 upregulation attenuated hypertrophy, apoptosis, oxidative stress and mitochondrial dysfunction. Furthermore, these effects were partially reversed by the AMPK inhibitor Compound C, implicating the involvement of the AMPK pathway in CTRP6-mediated cardioprotection. CTRP6 alleviates HF progression through the AMPK/SIRT1/PGC-1α signalling pathway.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.