Runchang Jia, Zhijie He, Cong Wang, Xudong Guo, Fuyi Li
{"title":"MetalPrognosis:基于生物语言模型的金属结合部位疾病相关突变预测方法。","authors":"Runchang Jia, Zhijie He, Cong Wang, Xudong Guo, Fuyi Li","doi":"10.1109/TCBB.2024.3467093","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-metal ion interactions play a central role in the onset of numerous diseases. When amino acid changes lead to missense mutations in metal-binding sites, the disrupted interaction with metal ions can compromise protein function, potentially causing severe human ailments. Identifying these disease-associated mutation sites within metal-binding regions is paramount for understanding protein function and fostering innovative drug development. While some computational methods aim to tackle this challenge, they often fall short in accuracy, commonly due to manual feature extraction and the absence of structural data. We introduce MetalPrognosis, an innovative, alignment-free solution that predicts disease-associated mutations within metal-binding sites of metalloproteins with heightened precision. Rather than relying on manual feature extraction, MetalPrognosis employs sliding window sequences as input, extracting deep semantic insights from pre-trained protein language models. These insights are then incorporated into a convolutional neural network, facilitating the derivation of intricate features. Comparative evaluations show MetalPrognosis outperforms leading methodologies like MCCNN and M-Ionic across various metalloprotein test sets. Furthermore, an ablation study reiterates the effectiveness of our model architecture. To facilitate public use, we have made the datasets, source codes, and trained models for MetalPrognosis online available at http://metalprognosis.unimelb-biotools.cloud.edu.au/.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MetalPrognosis: A Biological Language Model-Based Approach for Disease-Associated Mutations in Metal-Binding Site Prediction.\",\"authors\":\"Runchang Jia, Zhijie He, Cong Wang, Xudong Guo, Fuyi Li\",\"doi\":\"10.1109/TCBB.2024.3467093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein-metal ion interactions play a central role in the onset of numerous diseases. When amino acid changes lead to missense mutations in metal-binding sites, the disrupted interaction with metal ions can compromise protein function, potentially causing severe human ailments. Identifying these disease-associated mutation sites within metal-binding regions is paramount for understanding protein function and fostering innovative drug development. While some computational methods aim to tackle this challenge, they often fall short in accuracy, commonly due to manual feature extraction and the absence of structural data. We introduce MetalPrognosis, an innovative, alignment-free solution that predicts disease-associated mutations within metal-binding sites of metalloproteins with heightened precision. Rather than relying on manual feature extraction, MetalPrognosis employs sliding window sequences as input, extracting deep semantic insights from pre-trained protein language models. These insights are then incorporated into a convolutional neural network, facilitating the derivation of intricate features. Comparative evaluations show MetalPrognosis outperforms leading methodologies like MCCNN and M-Ionic across various metalloprotein test sets. Furthermore, an ablation study reiterates the effectiveness of our model architecture. To facilitate public use, we have made the datasets, source codes, and trained models for MetalPrognosis online available at http://metalprognosis.unimelb-biotools.cloud.edu.au/.</p>\",\"PeriodicalId\":13344,\"journal\":{\"name\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TCBB.2024.3467093\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3467093","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
MetalPrognosis: A Biological Language Model-Based Approach for Disease-Associated Mutations in Metal-Binding Site Prediction.
Protein-metal ion interactions play a central role in the onset of numerous diseases. When amino acid changes lead to missense mutations in metal-binding sites, the disrupted interaction with metal ions can compromise protein function, potentially causing severe human ailments. Identifying these disease-associated mutation sites within metal-binding regions is paramount for understanding protein function and fostering innovative drug development. While some computational methods aim to tackle this challenge, they often fall short in accuracy, commonly due to manual feature extraction and the absence of structural data. We introduce MetalPrognosis, an innovative, alignment-free solution that predicts disease-associated mutations within metal-binding sites of metalloproteins with heightened precision. Rather than relying on manual feature extraction, MetalPrognosis employs sliding window sequences as input, extracting deep semantic insights from pre-trained protein language models. These insights are then incorporated into a convolutional neural network, facilitating the derivation of intricate features. Comparative evaluations show MetalPrognosis outperforms leading methodologies like MCCNN and M-Ionic across various metalloprotein test sets. Furthermore, an ablation study reiterates the effectiveness of our model architecture. To facilitate public use, we have made the datasets, source codes, and trained models for MetalPrognosis online available at http://metalprognosis.unimelb-biotools.cloud.edu.au/.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system