{"title":"1,7-二羟基-3,4-二甲氧基黄酮通过精氨酸/半胱氨酸轴抑制 M1 型巨噬细胞的抗炎作用。","authors":"Xin Liu, Ting Wang, Ruoxuan Xiang, Huazhan Sun, Mengyan Zhao, Xiaojuan Ye, Yuyun Zhou, Guodong Wang, Yuyan Zhou","doi":"10.1007/s12026-024-09538-w","DOIUrl":null,"url":null,"abstract":"<p><p>It is known that 1,7-dihydroxy-3,4-dimethoxyxanthone (XAN), derived from Securidaca inappendiculata Hassk., exhibits anti-inflammatory and analgesic activities and inhibits M1 polarization of macrophages. However, its ability to alleviate inflammation induced by pro-inflammatory cytokines in THP-1 cells and its anti-inflammatory mechanisms remain unclear. THP-1 cells were treated with phorbol 12-myristate-13-acetate to differentiate and divided into three groups. They were stimulated with lipopolysaccharide (LPS) and interferon-γ (IFN-γ). The toxicity of XAN was assessed using Cell Counting Kit-8, and the expression of various genes and proteins was analyzed using real-time quantitative polymerase chain reaction, flow cytometry, and western blotting. Transmission electron microscopy was used to observe changes in mitochondrial structure. XAN at concentrations ≤ 10 µg/mL did not affect THP-1 cell viability and reduced the mRNA expression of pro-inflammatory factors, including interleukin (IL)-1β, inducible nitric oxide synthase (iNOS), NOD-like receptor thermal protein domain protein 3 (NLRP3), and tumor necrosis factor-α (TNF-α). XAN also increased the levels of anti-inflammatory factors, including chemokine ligand 22, mannose receptor (CD206), IL-10, peroxisome proliferator-activated receptor-γ, and transglutaminase 2. Additionally, XAN downregulated the expression of inflammation-related proteins iNOS, NLRP3, and IL-1β; significantly increased the expression of arginase 1, ornithine decarboxylase, and arginine metabolism-related proteins and genes; inhibited mitochondrial damage; and reduced reactive oxygen species (ROS) generation. XAN enhanced the arginine metabolism pathway, prevented mitochondrial damage, reduced ROS levels, and provided an effective defensive response against LPS/IFN-γ-induced inflammation.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-inflammatory effects of 1,7-dihydroxy-3,4-dimethoxyxanthone through inhibition of M1-phenotype macrophages via arginine/mitochondrial axis.\",\"authors\":\"Xin Liu, Ting Wang, Ruoxuan Xiang, Huazhan Sun, Mengyan Zhao, Xiaojuan Ye, Yuyun Zhou, Guodong Wang, Yuyan Zhou\",\"doi\":\"10.1007/s12026-024-09538-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is known that 1,7-dihydroxy-3,4-dimethoxyxanthone (XAN), derived from Securidaca inappendiculata Hassk., exhibits anti-inflammatory and analgesic activities and inhibits M1 polarization of macrophages. However, its ability to alleviate inflammation induced by pro-inflammatory cytokines in THP-1 cells and its anti-inflammatory mechanisms remain unclear. THP-1 cells were treated with phorbol 12-myristate-13-acetate to differentiate and divided into three groups. They were stimulated with lipopolysaccharide (LPS) and interferon-γ (IFN-γ). The toxicity of XAN was assessed using Cell Counting Kit-8, and the expression of various genes and proteins was analyzed using real-time quantitative polymerase chain reaction, flow cytometry, and western blotting. Transmission electron microscopy was used to observe changes in mitochondrial structure. XAN at concentrations ≤ 10 µg/mL did not affect THP-1 cell viability and reduced the mRNA expression of pro-inflammatory factors, including interleukin (IL)-1β, inducible nitric oxide synthase (iNOS), NOD-like receptor thermal protein domain protein 3 (NLRP3), and tumor necrosis factor-α (TNF-α). XAN also increased the levels of anti-inflammatory factors, including chemokine ligand 22, mannose receptor (CD206), IL-10, peroxisome proliferator-activated receptor-γ, and transglutaminase 2. Additionally, XAN downregulated the expression of inflammation-related proteins iNOS, NLRP3, and IL-1β; significantly increased the expression of arginase 1, ornithine decarboxylase, and arginine metabolism-related proteins and genes; inhibited mitochondrial damage; and reduced reactive oxygen species (ROS) generation. XAN enhanced the arginine metabolism pathway, prevented mitochondrial damage, reduced ROS levels, and provided an effective defensive response against LPS/IFN-γ-induced inflammation.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12026-024-09538-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12026-024-09538-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Anti-inflammatory effects of 1,7-dihydroxy-3,4-dimethoxyxanthone through inhibition of M1-phenotype macrophages via arginine/mitochondrial axis.
It is known that 1,7-dihydroxy-3,4-dimethoxyxanthone (XAN), derived from Securidaca inappendiculata Hassk., exhibits anti-inflammatory and analgesic activities and inhibits M1 polarization of macrophages. However, its ability to alleviate inflammation induced by pro-inflammatory cytokines in THP-1 cells and its anti-inflammatory mechanisms remain unclear. THP-1 cells were treated with phorbol 12-myristate-13-acetate to differentiate and divided into three groups. They were stimulated with lipopolysaccharide (LPS) and interferon-γ (IFN-γ). The toxicity of XAN was assessed using Cell Counting Kit-8, and the expression of various genes and proteins was analyzed using real-time quantitative polymerase chain reaction, flow cytometry, and western blotting. Transmission electron microscopy was used to observe changes in mitochondrial structure. XAN at concentrations ≤ 10 µg/mL did not affect THP-1 cell viability and reduced the mRNA expression of pro-inflammatory factors, including interleukin (IL)-1β, inducible nitric oxide synthase (iNOS), NOD-like receptor thermal protein domain protein 3 (NLRP3), and tumor necrosis factor-α (TNF-α). XAN also increased the levels of anti-inflammatory factors, including chemokine ligand 22, mannose receptor (CD206), IL-10, peroxisome proliferator-activated receptor-γ, and transglutaminase 2. Additionally, XAN downregulated the expression of inflammation-related proteins iNOS, NLRP3, and IL-1β; significantly increased the expression of arginase 1, ornithine decarboxylase, and arginine metabolism-related proteins and genes; inhibited mitochondrial damage; and reduced reactive oxygen species (ROS) generation. XAN enhanced the arginine metabolism pathway, prevented mitochondrial damage, reduced ROS levels, and provided an effective defensive response against LPS/IFN-γ-induced inflammation.