长期控释布隆色林微球的制备和释放模式研究

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics Pub Date : 2024-09-27 DOI:10.1016/j.ijpharm.2024.124756
{"title":"长期控释布隆色林微球的制备和释放模式研究","authors":"","doi":"10.1016/j.ijpharm.2024.124756","DOIUrl":null,"url":null,"abstract":"<div><div>To prepare a PLGA microsphere loaded with the antipsychotic Blonanserin without release leg period and released in a near-zero model for long time, in this study, 15 kDa and 75 kDa PLGA were chosen to be mixed with different ratios, and Blonanserin microspheres (Bn-MS) without significant differences in the particle size, drug loading capacity, and encapsulation rate were prepared by microfluidics. The release kinetic model was fitted to the release behavior by monitoring the changes in particle size and morphology during the Bn-MS release to investigate microspheres’ in vitro release pattern. The results showed that the addition of appropriate ratios of mixed molecular weights to Bn-MS could eliminate the release hysteresis period. When the ratio of 15 kDa and 75 kDa was 1:9 (F3), the Bn-MS had a low burst release rate, moderate release rate, no release hysteresis period, a long release period of up to 35 days, and a stable release pattern close to the zero level. The results of the release mechanism study indicated that the hybrid PLGA improved the release behavior of the microspheres by adjusting the dissolution degradation rate of Bn-MS, which in turn affected the release mechanism of the microspheres.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and release pattern study of long-term controlled release Blonanserin microspheres\",\"authors\":\"\",\"doi\":\"10.1016/j.ijpharm.2024.124756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To prepare a PLGA microsphere loaded with the antipsychotic Blonanserin without release leg period and released in a near-zero model for long time, in this study, 15 kDa and 75 kDa PLGA were chosen to be mixed with different ratios, and Blonanserin microspheres (Bn-MS) without significant differences in the particle size, drug loading capacity, and encapsulation rate were prepared by microfluidics. The release kinetic model was fitted to the release behavior by monitoring the changes in particle size and morphology during the Bn-MS release to investigate microspheres’ in vitro release pattern. The results showed that the addition of appropriate ratios of mixed molecular weights to Bn-MS could eliminate the release hysteresis period. When the ratio of 15 kDa and 75 kDa was 1:9 (F3), the Bn-MS had a low burst release rate, moderate release rate, no release hysteresis period, a long release period of up to 35 days, and a stable release pattern close to the zero level. The results of the release mechanism study indicated that the hybrid PLGA improved the release behavior of the microspheres by adjusting the dissolution degradation rate of Bn-MS, which in turn affected the release mechanism of the microspheres.</div></div>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378517324009906\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324009906","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

为制备无释放期、长时间近零释放模式的负载抗精神病药物布隆色林的PLGA微球,本研究选择15 kDa和75 kDa PLGA按不同比例混合,采用微流控技术制备了粒径、载药量和包封率无显著差异的布隆色林微球(Bn-MS)。通过监测 Bn-MS 释放过程中粒径和形态的变化,拟合释放动力学模型,研究微球的体外释放模式。结果表明,在 Bn-MS 中加入适当比例的混合分子量可以消除释放滞后期。当 15 kDa 和 75 kDa 的比例为 1:9 时(F3),Bn-MS 的猝灭释放率低,释放率适中,无释放滞后期,释放期长达 35 天,释放模式稳定,接近零水平。释放机理研究结果表明,混合聚乳酸(PLGA)通过调节 Bn-MS 的溶解降解速率改善了微球的释放行为,进而影响了微球的释放机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and release pattern study of long-term controlled release Blonanserin microspheres
To prepare a PLGA microsphere loaded with the antipsychotic Blonanserin without release leg period and released in a near-zero model for long time, in this study, 15 kDa and 75 kDa PLGA were chosen to be mixed with different ratios, and Blonanserin microspheres (Bn-MS) without significant differences in the particle size, drug loading capacity, and encapsulation rate were prepared by microfluidics. The release kinetic model was fitted to the release behavior by monitoring the changes in particle size and morphology during the Bn-MS release to investigate microspheres’ in vitro release pattern. The results showed that the addition of appropriate ratios of mixed molecular weights to Bn-MS could eliminate the release hysteresis period. When the ratio of 15 kDa and 75 kDa was 1:9 (F3), the Bn-MS had a low burst release rate, moderate release rate, no release hysteresis period, a long release period of up to 35 days, and a stable release pattern close to the zero level. The results of the release mechanism study indicated that the hybrid PLGA improved the release behavior of the microspheres by adjusting the dissolution degradation rate of Bn-MS, which in turn affected the release mechanism of the microspheres.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
期刊最新文献
Chitosan gel loaded with carbon dots and mesoporous hydroxyapatite nanoparticles as a topical formulation for skin regeneration: An animal study Quality by design-based optimization of teriflunomide and quercetin combinational topical transferosomes for the treatment of rheumatoid arthritis Nasal administration of Xingnaojing biomimetic nanoparticles for the treatment of ischemic stroke Silk fibroin/chitosan thiourea hydrogel scaffold with vancomycin and quercetin-loaded PLGA nanoparticles for treating chronic MRSA osteomyelitis in rats Erlotinib and curcumin-loaded nanoparticles embedded in thermosensitive chitosan hydrogels for enhanced treatment of head and neck cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1