Emily A Nelson, Anna L Tyler, Taylor Lakusta-Wong, Karolyn G Lahue, Katherine C Hankes, Cory Teuscher, Rachel M Lynch, Martin T Ferris, J Matthew Mahoney, Dimitry N Krementsov
{"title":"对不同基因小鼠中枢神经系统自身免疫的分析揭示了独特的表型和机制。","authors":"Emily A Nelson, Anna L Tyler, Taylor Lakusta-Wong, Karolyn G Lahue, Katherine C Hankes, Cory Teuscher, Rachel M Lynch, Martin T Ferris, J Matthew Mahoney, Dimitry N Krementsov","doi":"10.1172/jci.insight.184138","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a complex disease with significant heterogeneity in disease course and progression. Genetic studies have identified numerous loci associated with MS risk, but the genetic basis of disease progression remains elusive. To address this, we leveraged the Collaborative Cross (CC), a genetically diverse mouse strain panel, and experimental autoimmune encephalomyelitis (EAE). The 32 CC strains studied captured a wide spectrum of EAE severity, trajectory, and presentation, including severe-progressive, monophasic, relapsing remitting, and axial rotary-EAE (AR-EAE), accompanied by distinct immunopathology. Sex differences in EAE severity were observed in 6 strains. Quantitative trait locus analysis revealed distinct genetic linkage patterns for different EAE phenotypes, including EAE severity and incidence of AR-EAE. Machine learning-based approaches prioritized candidate genes for loci underlying EAE severity (Abcc4 and Gpc6) and AR-EAE (Yap1 and Dync2h1). This work expands the EAE phenotypic repertoire and identifies potentially novel loci controlling unique EAE phenotypes, supporting the hypothesis that heterogeneity in MS disease course is driven by genetic variation.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of CNS autoimmunity in genetically diverse mice reveals unique phenotypes and mechanisms.\",\"authors\":\"Emily A Nelson, Anna L Tyler, Taylor Lakusta-Wong, Karolyn G Lahue, Katherine C Hankes, Cory Teuscher, Rachel M Lynch, Martin T Ferris, J Matthew Mahoney, Dimitry N Krementsov\",\"doi\":\"10.1172/jci.insight.184138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple sclerosis (MS) is a complex disease with significant heterogeneity in disease course and progression. Genetic studies have identified numerous loci associated with MS risk, but the genetic basis of disease progression remains elusive. To address this, we leveraged the Collaborative Cross (CC), a genetically diverse mouse strain panel, and experimental autoimmune encephalomyelitis (EAE). The 32 CC strains studied captured a wide spectrum of EAE severity, trajectory, and presentation, including severe-progressive, monophasic, relapsing remitting, and axial rotary-EAE (AR-EAE), accompanied by distinct immunopathology. Sex differences in EAE severity were observed in 6 strains. Quantitative trait locus analysis revealed distinct genetic linkage patterns for different EAE phenotypes, including EAE severity and incidence of AR-EAE. Machine learning-based approaches prioritized candidate genes for loci underlying EAE severity (Abcc4 and Gpc6) and AR-EAE (Yap1 and Dync2h1). This work expands the EAE phenotypic repertoire and identifies potentially novel loci controlling unique EAE phenotypes, supporting the hypothesis that heterogeneity in MS disease course is driven by genetic variation.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.184138\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.184138","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Analysis of CNS autoimmunity in genetically diverse mice reveals unique phenotypes and mechanisms.
Multiple sclerosis (MS) is a complex disease with significant heterogeneity in disease course and progression. Genetic studies have identified numerous loci associated with MS risk, but the genetic basis of disease progression remains elusive. To address this, we leveraged the Collaborative Cross (CC), a genetically diverse mouse strain panel, and experimental autoimmune encephalomyelitis (EAE). The 32 CC strains studied captured a wide spectrum of EAE severity, trajectory, and presentation, including severe-progressive, monophasic, relapsing remitting, and axial rotary-EAE (AR-EAE), accompanied by distinct immunopathology. Sex differences in EAE severity were observed in 6 strains. Quantitative trait locus analysis revealed distinct genetic linkage patterns for different EAE phenotypes, including EAE severity and incidence of AR-EAE. Machine learning-based approaches prioritized candidate genes for loci underlying EAE severity (Abcc4 and Gpc6) and AR-EAE (Yap1 and Dync2h1). This work expands the EAE phenotypic repertoire and identifies potentially novel loci controlling unique EAE phenotypes, supporting the hypothesis that heterogeneity in MS disease course is driven by genetic variation.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.