Della Rahmawati , Mary Faith Yamballa Adan , Muhammad Maulana Malikul Ikram , Marvin Nathanael Iman , Eiichiro Fukusaki , Sastia Prama Putri
{"title":"焦亚硫酸钠处理和储存条件对椰子(Cocos nucifera L.)新陈代谢的影响","authors":"Della Rahmawati , Mary Faith Yamballa Adan , Muhammad Maulana Malikul Ikram , Marvin Nathanael Iman , Eiichiro Fukusaki , Sastia Prama Putri","doi":"10.1016/j.jbiosc.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>Young coconuts (<em>Cocos nucifera</em> L.) used for export are trimmed to reduce their size and weight to lower transport costs. However, trimmed coconuts have a shorter shelf life due to microbial spoilage and surface discoloration caused by enzymatic browning. To minimize these effects, trimmed coconuts were dipped in an anti-browning agent, sodium metabisulfite (SMB), and stored under ambient conditions. However, there have been no reports on the effects of SMB treatment on metabolome changes in the flesh and water of young coconuts. Hence, this study investigated the metabolite changes in trimmed young coconuts after SMB treatment under different storage conditions using a gas chromatography (GC)/mass spectrometry (MS) metabolomic profiling approach. Tall young coconut samples were trimmed and treated with a 2% SMB solution for 5 min before storage at 25 °C or 4 °C for 2–4 weeks. Coconut flesh and water samples were collected after storage for 0, 2, and 4 weeks, and were subjected to GC–MS analysis. The results showed that the major metabolites affected by coconut deterioration were amino acids, sugars, and sugar alcohols. SMB treatment and/or refrigeration can help prevent metabolite changes in the flesh and water of young coconuts. In the future, improvements in storage conditions based on metabolite profiles should be explored.</div></div>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":"138 6","pages":"Pages 515-521"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of sodium metabisulfite treatment and storage condition on metabolic profile of young coconut (Cocos nucifera L.)\",\"authors\":\"Della Rahmawati , Mary Faith Yamballa Adan , Muhammad Maulana Malikul Ikram , Marvin Nathanael Iman , Eiichiro Fukusaki , Sastia Prama Putri\",\"doi\":\"10.1016/j.jbiosc.2024.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Young coconuts (<em>Cocos nucifera</em> L.) used for export are trimmed to reduce their size and weight to lower transport costs. However, trimmed coconuts have a shorter shelf life due to microbial spoilage and surface discoloration caused by enzymatic browning. To minimize these effects, trimmed coconuts were dipped in an anti-browning agent, sodium metabisulfite (SMB), and stored under ambient conditions. However, there have been no reports on the effects of SMB treatment on metabolome changes in the flesh and water of young coconuts. Hence, this study investigated the metabolite changes in trimmed young coconuts after SMB treatment under different storage conditions using a gas chromatography (GC)/mass spectrometry (MS) metabolomic profiling approach. Tall young coconut samples were trimmed and treated with a 2% SMB solution for 5 min before storage at 25 °C or 4 °C for 2–4 weeks. Coconut flesh and water samples were collected after storage for 0, 2, and 4 weeks, and were subjected to GC–MS analysis. The results showed that the major metabolites affected by coconut deterioration were amino acids, sugars, and sugar alcohols. SMB treatment and/or refrigeration can help prevent metabolite changes in the flesh and water of young coconuts. In the future, improvements in storage conditions based on metabolite profiles should be explored.</div></div>\",\"PeriodicalId\":15199,\"journal\":{\"name\":\"Journal of bioscience and bioengineering\",\"volume\":\"138 6\",\"pages\":\"Pages 515-521\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of bioscience and bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389172324002329\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioscience and bioengineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389172324002329","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Effect of sodium metabisulfite treatment and storage condition on metabolic profile of young coconut (Cocos nucifera L.)
Young coconuts (Cocos nucifera L.) used for export are trimmed to reduce their size and weight to lower transport costs. However, trimmed coconuts have a shorter shelf life due to microbial spoilage and surface discoloration caused by enzymatic browning. To minimize these effects, trimmed coconuts were dipped in an anti-browning agent, sodium metabisulfite (SMB), and stored under ambient conditions. However, there have been no reports on the effects of SMB treatment on metabolome changes in the flesh and water of young coconuts. Hence, this study investigated the metabolite changes in trimmed young coconuts after SMB treatment under different storage conditions using a gas chromatography (GC)/mass spectrometry (MS) metabolomic profiling approach. Tall young coconut samples were trimmed and treated with a 2% SMB solution for 5 min before storage at 25 °C or 4 °C for 2–4 weeks. Coconut flesh and water samples were collected after storage for 0, 2, and 4 weeks, and were subjected to GC–MS analysis. The results showed that the major metabolites affected by coconut deterioration were amino acids, sugars, and sugar alcohols. SMB treatment and/or refrigeration can help prevent metabolite changes in the flesh and water of young coconuts. In the future, improvements in storage conditions based on metabolite profiles should be explored.
期刊介绍:
The Journal of Bioscience and Bioengineering is a research journal publishing original full-length research papers, reviews, and Letters to the Editor. The Journal is devoted to the advancement and dissemination of knowledge concerning fermentation technology, biochemical engineering, food technology and microbiology.