Michael C Granatosky, Edwin Dickinson, Melody W Young, Pierre Lemelin
{"title":"浣熊的难题:树栖水平的变化如何影响三种鼬科动物的步态力学。","authors":"Michael C Granatosky, Edwin Dickinson, Melody W Young, Pierre Lemelin","doi":"10.1242/jeb.247630","DOIUrl":null,"url":null,"abstract":"<p><p>The gait characteristics associated with arboreal locomotion have been frequently discussed in the context of primate evolution, wherein they present as a trio of distinctive features: a diagonal-sequence, diagonal-couplet gait pattern; a protracted arm at forelimb touchdown; and a hindlimb-biased weight support pattern. The same locomotor characteristics have been found in the woolly opossum, a fine-branch arborealist similar in ecology to some small-bodied primates. To further our understanding of the functional link between arboreality and primate-like locomotion, we present comparative data collected in the laboratory for three musteloid taxa. Musteloidea represents an ecologically diverse superfamily spanning numerous locomotor specializations that includes the highly arboreal kinkajou (Potos flavus), mixed arboreal/terrestrial red pandas (Ailurus fulgens) and primarily terrestrial coatis (Nasua narica). This study applies a combined kinetic and kinematic approach to compare the locomotor behaviors of these three musteloid taxa, representing varying degrees of arboreal specialization. We observed highly arboreal kinkajous to share many locomotor traits with primates. In contrast, red pandas (mixed terrestrial/arborealist) showed gait characteristics found in most non-primate mammals. Coatis, however, demonstrated a unique combination of locomotor traits, combining a lateral-sequence, lateral-couplet gait pattern typical of long-legged, highly terrestrial mammals, varying degrees of arm protraction, and a hindlimb-biased weight support pattern typical of most primates and woolly opossums. We conclude that the three gait characteristics traditionally used to describe arboreal walking in primates can occur independently from one another and not necessarily as a suite of interdependent characteristics, a phenomenon that has been reported for some primates.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A coati conundrum: how variation in levels of arboreality influences gait mechanics among three musteloid species.\",\"authors\":\"Michael C Granatosky, Edwin Dickinson, Melody W Young, Pierre Lemelin\",\"doi\":\"10.1242/jeb.247630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gait characteristics associated with arboreal locomotion have been frequently discussed in the context of primate evolution, wherein they present as a trio of distinctive features: a diagonal-sequence, diagonal-couplet gait pattern; a protracted arm at forelimb touchdown; and a hindlimb-biased weight support pattern. The same locomotor characteristics have been found in the woolly opossum, a fine-branch arborealist similar in ecology to some small-bodied primates. To further our understanding of the functional link between arboreality and primate-like locomotion, we present comparative data collected in the laboratory for three musteloid taxa. Musteloidea represents an ecologically diverse superfamily spanning numerous locomotor specializations that includes the highly arboreal kinkajou (Potos flavus), mixed arboreal/terrestrial red pandas (Ailurus fulgens) and primarily terrestrial coatis (Nasua narica). This study applies a combined kinetic and kinematic approach to compare the locomotor behaviors of these three musteloid taxa, representing varying degrees of arboreal specialization. We observed highly arboreal kinkajous to share many locomotor traits with primates. In contrast, red pandas (mixed terrestrial/arborealist) showed gait characteristics found in most non-primate mammals. Coatis, however, demonstrated a unique combination of locomotor traits, combining a lateral-sequence, lateral-couplet gait pattern typical of long-legged, highly terrestrial mammals, varying degrees of arm protraction, and a hindlimb-biased weight support pattern typical of most primates and woolly opossums. We conclude that the three gait characteristics traditionally used to describe arboreal walking in primates can occur independently from one another and not necessarily as a suite of interdependent characteristics, a phenomenon that has been reported for some primates.</p>\",\"PeriodicalId\":15786,\"journal\":{\"name\":\"Journal of Experimental Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jeb.247630\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.247630","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
A coati conundrum: how variation in levels of arboreality influences gait mechanics among three musteloid species.
The gait characteristics associated with arboreal locomotion have been frequently discussed in the context of primate evolution, wherein they present as a trio of distinctive features: a diagonal-sequence, diagonal-couplet gait pattern; a protracted arm at forelimb touchdown; and a hindlimb-biased weight support pattern. The same locomotor characteristics have been found in the woolly opossum, a fine-branch arborealist similar in ecology to some small-bodied primates. To further our understanding of the functional link between arboreality and primate-like locomotion, we present comparative data collected in the laboratory for three musteloid taxa. Musteloidea represents an ecologically diverse superfamily spanning numerous locomotor specializations that includes the highly arboreal kinkajou (Potos flavus), mixed arboreal/terrestrial red pandas (Ailurus fulgens) and primarily terrestrial coatis (Nasua narica). This study applies a combined kinetic and kinematic approach to compare the locomotor behaviors of these three musteloid taxa, representing varying degrees of arboreal specialization. We observed highly arboreal kinkajous to share many locomotor traits with primates. In contrast, red pandas (mixed terrestrial/arborealist) showed gait characteristics found in most non-primate mammals. Coatis, however, demonstrated a unique combination of locomotor traits, combining a lateral-sequence, lateral-couplet gait pattern typical of long-legged, highly terrestrial mammals, varying degrees of arm protraction, and a hindlimb-biased weight support pattern typical of most primates and woolly opossums. We conclude that the three gait characteristics traditionally used to describe arboreal walking in primates can occur independently from one another and not necessarily as a suite of interdependent characteristics, a phenomenon that has been reported for some primates.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.