在对有随访的流行病学或临床研究进行分析时,何时以及如何分割随访时间。

IF 3.7 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Journal of Epidemiology Pub Date : 2024-09-28 DOI:10.2188/jea.JE20240245
Masao Iwagami, Miho Ishimaru, Yoshinori Takeuchi, Tomohiro Shinozaki
{"title":"在对有随访的流行病学或临床研究进行分析时,何时以及如何分割随访时间。","authors":"Masao Iwagami, Miho Ishimaru, Yoshinori Takeuchi, Tomohiro Shinozaki","doi":"10.2188/jea.JE20240245","DOIUrl":null,"url":null,"abstract":"<p><p>In epidemiological or clinical studies with follow-ups, data tables generated and processed for statistical analysis are often of the \"wide-format\" type-consisting of one row per individual. However, depending on the situation and purpose of the study, they may need to be transformed into the \"long-format\" type-which allows for multiple rows per individual. This tutorial clarifies the typical situations wherein researchers are recommended to split follow-up times to generate long-format data tables. In such applications, the major analytical aims consist of (i) estimating the outcome incidence rates or their ratios between ≥ 2 groups, according to specific follow-up time periods; (ii) examining the interaction between the exposure status and follow-up time to assess the proportional hazards assumption in Cox models; (iii) dealing with time-varying exposures for descriptive or predictive purposes; (iv) estimating the causal effects of time-varying exposures while adjusting for time-varying confounders that may be affected by past exposures; and (v) comparing different time periods within the same individual in self-controlled case series analyses. This tutorial also discusses how to split follow-up times according to their purposes in practical settings, providing example codes in Stata, R, and SAS.</p>","PeriodicalId":15799,"journal":{"name":"Journal of Epidemiology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"When and how to split the follow-up time in the analysis of epidemiological or clinical studies with follow-ups.\",\"authors\":\"Masao Iwagami, Miho Ishimaru, Yoshinori Takeuchi, Tomohiro Shinozaki\",\"doi\":\"10.2188/jea.JE20240245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In epidemiological or clinical studies with follow-ups, data tables generated and processed for statistical analysis are often of the \\\"wide-format\\\" type-consisting of one row per individual. However, depending on the situation and purpose of the study, they may need to be transformed into the \\\"long-format\\\" type-which allows for multiple rows per individual. This tutorial clarifies the typical situations wherein researchers are recommended to split follow-up times to generate long-format data tables. In such applications, the major analytical aims consist of (i) estimating the outcome incidence rates or their ratios between ≥ 2 groups, according to specific follow-up time periods; (ii) examining the interaction between the exposure status and follow-up time to assess the proportional hazards assumption in Cox models; (iii) dealing with time-varying exposures for descriptive or predictive purposes; (iv) estimating the causal effects of time-varying exposures while adjusting for time-varying confounders that may be affected by past exposures; and (v) comparing different time periods within the same individual in self-controlled case series analyses. This tutorial also discusses how to split follow-up times according to their purposes in practical settings, providing example codes in Stata, R, and SAS.</p>\",\"PeriodicalId\":15799,\"journal\":{\"name\":\"Journal of Epidemiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2188/jea.JE20240245\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2188/jea.JE20240245","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

在有随访的流行病学或临床研究中,为进行统计分析而生成和处理的数据表通常是 "宽格式 "的--每个人只有一行。但是,根据研究的具体情况和目的,可能需要将其转换为 "长格式 "类型,即允许每个个体有多行。本教程阐明了建议研究人员分割随访时间以生成长格式数据表的典型情况。在此类应用中,主要的分析目的包括:(i) 根据特定的随访时间段,估计≥ 2 组之间的结果发生率或其比率;(ii) 检查暴露状态与随访时间之间的交互作用,以评估 Cox 模型中的比例危险假设;(iii) 出于描述性或预测性目的处理时变暴露;(iv) 估计时变暴露的因果效应,同时调整可能受过去暴露影响的时变混杂因素;以及 (v) 在自控病例系列分析中比较同一个体的不同时间段。本教程还讨论了如何在实际设置中根据目的分割随访时间,并提供了 Stata、R 和 SAS 中的示例代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
When and how to split the follow-up time in the analysis of epidemiological or clinical studies with follow-ups.

In epidemiological or clinical studies with follow-ups, data tables generated and processed for statistical analysis are often of the "wide-format" type-consisting of one row per individual. However, depending on the situation and purpose of the study, they may need to be transformed into the "long-format" type-which allows for multiple rows per individual. This tutorial clarifies the typical situations wherein researchers are recommended to split follow-up times to generate long-format data tables. In such applications, the major analytical aims consist of (i) estimating the outcome incidence rates or their ratios between ≥ 2 groups, according to specific follow-up time periods; (ii) examining the interaction between the exposure status and follow-up time to assess the proportional hazards assumption in Cox models; (iii) dealing with time-varying exposures for descriptive or predictive purposes; (iv) estimating the causal effects of time-varying exposures while adjusting for time-varying confounders that may be affected by past exposures; and (v) comparing different time periods within the same individual in self-controlled case series analyses. This tutorial also discusses how to split follow-up times according to their purposes in practical settings, providing example codes in Stata, R, and SAS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Epidemiology
Journal of Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
7.50
自引率
4.30%
发文量
172
审稿时长
6-12 weeks
期刊介绍: The Journal of Epidemiology is the official open access scientific journal of the Japan Epidemiological Association. The Journal publishes a broad range of original research on epidemiology as it relates to human health, and aims to promote communication among those engaged in the field of epidemiological research and those who use epidemiological findings.
期刊最新文献
Association between informal caregiving and changes in cardiovascular-related health behaviors among middle-aged and older adults in Japan: A 15-year panel survey. Number of teeth and incidence of hip fracture in older adults aged ≥75 years: the OHSAKA study. The Wako Cohort Study: Design and Profile of Participants at Baseline. Comprehensive assessment of the impact of blood pressure, body mass index, smoking, and diabetes on healthy life expectancy in Japan: NIPPON DATA90. Patterns of use of heated tobacco products: a comprehensive systematic review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1