诺如病毒 GII.2 中主要和次要囊体蛋白的非同步进化模式和相互影响。

IF 3.6 4区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of General Virology Pub Date : 2024-09-01 DOI:10.1099/jgv.0.002024
Ruiquan Xu, Liang Xue, Jingmin Wang, Yiqing Chen, Yingwen Cao, Junshan Gao, Hui Gao, Qingyao Du, Xiaoxia Kou, Lin Yu
{"title":"诺如病毒 GII.2 中主要和次要囊体蛋白的非同步进化模式和相互影响。","authors":"Ruiquan Xu, Liang Xue, Jingmin Wang, Yiqing Chen, Yingwen Cao, Junshan Gao, Hui Gao, Qingyao Du, Xiaoxia Kou, Lin Yu","doi":"10.1099/jgv.0.002024","DOIUrl":null,"url":null,"abstract":"<p><p>Human noroviruses are the most common cause of viral gastroenteritis, resulting annually in 219 000 deaths and a societal cost of $60 billion, and no antivirals or vaccines are available. The minor capsid protein may play a significant role in the evolution of norovirus. GII.4 is the predominant genotype of norovirus, and its VP2 undergoes epochal co-evolution with the major capsid protein VP1. Since the sudden emergence of norovirus GII.2[P16] in 2016, it has consistently remained a significant epidemic strain in recent years. In the construction of phylogenetic trees, the phylogenetic trees of VP2 closely parallel those of VP1 due to the shared tree topology of both proteins. To investigate the interaction patterns between the major and minor capsid proteins of norovirus GII.2, we chose five representative strains of GII.2 norovirus and investigated their evolutionary patterns using a yeast two-hybrid experiment. Our study shows VP1-VP2 interaction in GII.2, with critical interaction sites at 167-178 and 184-186 in the highly variable region. In the intra-within GII.2, we observed no temporal co-evolution between VP1 and VP2 of GII.2. Notable distinctions were observed in the interaction intensity of VP2 among inter-genotype (<i>P</i><0.05), highlighting the divergent evolutionary patterns of VP2 within different norovirus genotypes. In summary, the interactions between VP2 and VP1 of GII.2 norovirus exhibit out-of-sync evolutionary patterns. This study offered valuable insights for further understanding and completing the evolutionary mechanism of norovirus.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 9","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430271/pdf/","citationCount":"0","resultStr":"{\"title\":\"Out-of-sync evolutionary patterns and mutual interplay of major and minor capsid proteins in norovirus GII.2.\",\"authors\":\"Ruiquan Xu, Liang Xue, Jingmin Wang, Yiqing Chen, Yingwen Cao, Junshan Gao, Hui Gao, Qingyao Du, Xiaoxia Kou, Lin Yu\",\"doi\":\"10.1099/jgv.0.002024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human noroviruses are the most common cause of viral gastroenteritis, resulting annually in 219 000 deaths and a societal cost of $60 billion, and no antivirals or vaccines are available. The minor capsid protein may play a significant role in the evolution of norovirus. GII.4 is the predominant genotype of norovirus, and its VP2 undergoes epochal co-evolution with the major capsid protein VP1. Since the sudden emergence of norovirus GII.2[P16] in 2016, it has consistently remained a significant epidemic strain in recent years. In the construction of phylogenetic trees, the phylogenetic trees of VP2 closely parallel those of VP1 due to the shared tree topology of both proteins. To investigate the interaction patterns between the major and minor capsid proteins of norovirus GII.2, we chose five representative strains of GII.2 norovirus and investigated their evolutionary patterns using a yeast two-hybrid experiment. Our study shows VP1-VP2 interaction in GII.2, with critical interaction sites at 167-178 and 184-186 in the highly variable region. In the intra-within GII.2, we observed no temporal co-evolution between VP1 and VP2 of GII.2. Notable distinctions were observed in the interaction intensity of VP2 among inter-genotype (<i>P</i><0.05), highlighting the divergent evolutionary patterns of VP2 within different norovirus genotypes. In summary, the interactions between VP2 and VP1 of GII.2 norovirus exhibit out-of-sync evolutionary patterns. This study offered valuable insights for further understanding and completing the evolutionary mechanism of norovirus.</p>\",\"PeriodicalId\":15880,\"journal\":{\"name\":\"Journal of General Virology\",\"volume\":\"105 9\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430271/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1099/jgv.0.002024\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1099/jgv.0.002024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类诺如病毒是病毒性肠胃炎最常见的病因,每年造成 219 000 人死亡,社会成本高达 600 亿美元,目前还没有抗病毒药物或疫苗。小囊膜蛋白可能在诺如病毒的进化过程中发挥了重要作用。GII.4是诺如病毒的主要基因型,其VP2与主要囊膜蛋白VP1经历了划时代的共同进化。自2016年诺如病毒GII.2[P16]突然出现以来,近年来它始终是一个重要的流行毒株。在系统发生树的构建过程中,由于VP2和VP1具有共同的树拓扑结构,因此VP2的系统发生树与VP1的系统发生树紧密平行。为了研究诺如病毒GII.2的主要和次要囊膜蛋白之间的相互作用模式,我们选择了5株具有代表性的GII.2诺如病毒,并利用酵母双杂交实验研究了它们的进化模式。我们的研究表明,GII.2病毒的VP1-VP2之间存在相互作用,关键的相互作用位点位于高变异区的167-178和184-186处。在 GII.2 内部,我们观察到 GII.2 的 VP1 和 VP2 之间没有时间上的共同进化。在不同基因型之间,VP2 的相互作用强度有显著差异(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Out-of-sync evolutionary patterns and mutual interplay of major and minor capsid proteins in norovirus GII.2.

Human noroviruses are the most common cause of viral gastroenteritis, resulting annually in 219 000 deaths and a societal cost of $60 billion, and no antivirals or vaccines are available. The minor capsid protein may play a significant role in the evolution of norovirus. GII.4 is the predominant genotype of norovirus, and its VP2 undergoes epochal co-evolution with the major capsid protein VP1. Since the sudden emergence of norovirus GII.2[P16] in 2016, it has consistently remained a significant epidemic strain in recent years. In the construction of phylogenetic trees, the phylogenetic trees of VP2 closely parallel those of VP1 due to the shared tree topology of both proteins. To investigate the interaction patterns between the major and minor capsid proteins of norovirus GII.2, we chose five representative strains of GII.2 norovirus and investigated their evolutionary patterns using a yeast two-hybrid experiment. Our study shows VP1-VP2 interaction in GII.2, with critical interaction sites at 167-178 and 184-186 in the highly variable region. In the intra-within GII.2, we observed no temporal co-evolution between VP1 and VP2 of GII.2. Notable distinctions were observed in the interaction intensity of VP2 among inter-genotype (P<0.05), highlighting the divergent evolutionary patterns of VP2 within different norovirus genotypes. In summary, the interactions between VP2 and VP1 of GII.2 norovirus exhibit out-of-sync evolutionary patterns. This study offered valuable insights for further understanding and completing the evolutionary mechanism of norovirus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of General Virology
Journal of General Virology 医学-病毒学
CiteScore
7.70
自引率
2.60%
发文量
91
审稿时长
3 months
期刊介绍: JOURNAL OF GENERAL VIROLOGY (JGV), a journal of the Society for General Microbiology (SGM), publishes high-calibre research papers with high production standards, giving the journal a worldwide reputation for excellence and attracting an eminent audience.
期刊最新文献
Emergence of highly pathogenic avian influenza viruses H5N1 and H5N5 in white-tailed eagles, 2021-2023. Preliminary evidence that Bunyamwera virus causes severe disease characterized by systemic vascular and multiorgan necrosis in an immunocompromised mouse model. ICTV Virus Taxonomy Profile: Peribunyaviridae 2024. Toscana virus - an emerging Mediterranean arbovirus transmitted by sand flies. Dicer-2 mutations in Aedes aegypti cells lead to a diminished antiviral function against Rift Valley fever virus and Bunyamwera virus infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1