发育期维生素 D 缺乏和维生素 D 受体控制造血功能

IF 3.6 3区 医学 Q2 IMMUNOLOGY Journal of immunology Pub Date : 2024-09-25 DOI:10.4049/jimmunol.2400292
Juhi Arora, Nicole E Froelich, Mengzhu Tang, Veronika Weaver, Robert F Paulson, Margherita T Cantorna
{"title":"发育期维生素 D 缺乏和维生素 D 受体控制造血功能","authors":"Juhi Arora, Nicole E Froelich, Mengzhu Tang, Veronika Weaver, Robert F Paulson, Margherita T Cantorna","doi":"10.4049/jimmunol.2400292","DOIUrl":null,"url":null,"abstract":"<p><p>Vitamin D status, the vitamin D receptor (VDR), and the ability to produce active vitamin D [1,25(OH)2D, regulated by Cyp27b1] regulate fetal and adult hematopoiesis. Transgenic reporter mice that express the tdTomato RFP as an indication of Vdr expression were used to identify immune cells that express the Vdr. Vdr/tdTomato+ hematopoietic progenitors were identified as early as embryonic day (E)15.5, establishing that these cells have expressed the Vdr and are vitamin D targets. Maternal vitamin D deficiency [D-; serum 25(OH)D < 20 ng/ml] or Vdr knockout or Cyp27b1 knockout resulted in embryos with fewer fetal progenitors. Vdr/tdTomato+ expression was found to increase with age in CD8+ T cells and innate lymphoid cells (ILCs)1 and ILC3, suggesting that initial Vdr expression in these cells is dependent on environmental factors immediately postbirth. In adult tissues, the frequencies of mature T cells and ILCs as well as Vdr/tdTomato expression were reduced by D-. Maternal D- resulted in fewer progenitors that expressed Vdr/tdTomato+ at E15.5 and fewer Vdr/tdTomato+ immune cells in the adult spleen than offspring from D+ mice. We challenged D- mice with H1N1 influenza infection and found that D- mice were more susceptible than D+ mice. Treating D- mice with vitamin D restored Vdr/tdTomato+ expression in splenic T cells and partially restored resistance to H1N1 infection, which shows that developmental D- results in lingering effects on Vdr expression in the adult immune system that compromise the immune response to H1N1 infection. Vitamin D and the Vdr regulate hematopoiesis in both fetal and postnatal phases of immune cell development that impact the immune response to a viral infection.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developmental Vitamin D Deficiency and the Vitamin D Receptor Control Hematopoiesis.\",\"authors\":\"Juhi Arora, Nicole E Froelich, Mengzhu Tang, Veronika Weaver, Robert F Paulson, Margherita T Cantorna\",\"doi\":\"10.4049/jimmunol.2400292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vitamin D status, the vitamin D receptor (VDR), and the ability to produce active vitamin D [1,25(OH)2D, regulated by Cyp27b1] regulate fetal and adult hematopoiesis. Transgenic reporter mice that express the tdTomato RFP as an indication of Vdr expression were used to identify immune cells that express the Vdr. Vdr/tdTomato+ hematopoietic progenitors were identified as early as embryonic day (E)15.5, establishing that these cells have expressed the Vdr and are vitamin D targets. Maternal vitamin D deficiency [D-; serum 25(OH)D < 20 ng/ml] or Vdr knockout or Cyp27b1 knockout resulted in embryos with fewer fetal progenitors. Vdr/tdTomato+ expression was found to increase with age in CD8+ T cells and innate lymphoid cells (ILCs)1 and ILC3, suggesting that initial Vdr expression in these cells is dependent on environmental factors immediately postbirth. In adult tissues, the frequencies of mature T cells and ILCs as well as Vdr/tdTomato expression were reduced by D-. Maternal D- resulted in fewer progenitors that expressed Vdr/tdTomato+ at E15.5 and fewer Vdr/tdTomato+ immune cells in the adult spleen than offspring from D+ mice. We challenged D- mice with H1N1 influenza infection and found that D- mice were more susceptible than D+ mice. Treating D- mice with vitamin D restored Vdr/tdTomato+ expression in splenic T cells and partially restored resistance to H1N1 infection, which shows that developmental D- results in lingering effects on Vdr expression in the adult immune system that compromise the immune response to H1N1 infection. Vitamin D and the Vdr regulate hematopoiesis in both fetal and postnatal phases of immune cell development that impact the immune response to a viral infection.</p>\",\"PeriodicalId\":16045,\"journal\":{\"name\":\"Journal of immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4049/jimmunol.2400292\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4049/jimmunol.2400292","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

维生素 D 状态、维生素 D 受体(VDR)和产生活性维生素 D [1,25(OH)2D, 由 Cyp27b1 调节]的能力调节着胎儿和成人的造血。表达tdTomato RFP作为Vdr表达的标志的转基因报告小鼠被用来鉴定表达Vdr的免疫细胞。Vdr/tdTomato+造血祖细胞早在胚胎第(E)15.5天就被鉴定出来,从而确定这些细胞表达了Vdr,并且是维生素D的靶细胞。母体维生素 D 缺乏[D-;血清 25(OH)D
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developmental Vitamin D Deficiency and the Vitamin D Receptor Control Hematopoiesis.

Vitamin D status, the vitamin D receptor (VDR), and the ability to produce active vitamin D [1,25(OH)2D, regulated by Cyp27b1] regulate fetal and adult hematopoiesis. Transgenic reporter mice that express the tdTomato RFP as an indication of Vdr expression were used to identify immune cells that express the Vdr. Vdr/tdTomato+ hematopoietic progenitors were identified as early as embryonic day (E)15.5, establishing that these cells have expressed the Vdr and are vitamin D targets. Maternal vitamin D deficiency [D-; serum 25(OH)D < 20 ng/ml] or Vdr knockout or Cyp27b1 knockout resulted in embryos with fewer fetal progenitors. Vdr/tdTomato+ expression was found to increase with age in CD8+ T cells and innate lymphoid cells (ILCs)1 and ILC3, suggesting that initial Vdr expression in these cells is dependent on environmental factors immediately postbirth. In adult tissues, the frequencies of mature T cells and ILCs as well as Vdr/tdTomato expression were reduced by D-. Maternal D- resulted in fewer progenitors that expressed Vdr/tdTomato+ at E15.5 and fewer Vdr/tdTomato+ immune cells in the adult spleen than offspring from D+ mice. We challenged D- mice with H1N1 influenza infection and found that D- mice were more susceptible than D+ mice. Treating D- mice with vitamin D restored Vdr/tdTomato+ expression in splenic T cells and partially restored resistance to H1N1 infection, which shows that developmental D- results in lingering effects on Vdr expression in the adult immune system that compromise the immune response to H1N1 infection. Vitamin D and the Vdr regulate hematopoiesis in both fetal and postnatal phases of immune cell development that impact the immune response to a viral infection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of immunology
Journal of immunology 医学-免疫学
CiteScore
8.20
自引率
2.30%
发文量
495
审稿时长
1 months
期刊介绍: The JI publishes novel, peer-reviewed findings in all areas of experimental immunology, including innate and adaptive immunity, inflammation, host defense, clinical immunology, autoimmunity and more. Special sections include Cutting Edge articles, Brief Reviews and Pillars of Immunology. The JI is published by The American Association of Immunologists (AAI)
期刊最新文献
Immunometabolic Mechanisms of LANCL2 in CD4+ T Cells and Phagocytes Provide Protection from Systemic Lupus Erythematosus. C1q/MASP Complexes-Hybrid Complexes of Classical and Lectin Pathway Proteins Are Found in the Circulation. Rapid Autopsy to Define Dendritic Cell Spatial Distribution and T Cell Association in Lung Adenocarcinoma. Cutting Edge: Retinoic Acid Promotes Brain-homing of CD8+ T Cells during Congenital Cytomegalovirus Infection. A Chimeric IL-7Rα/IL-2Rβ Receptor Promotes the Differentiation of T Cell Progenitors into B Cells and Type 2 Innate Lymphoid Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1